UNI

"
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

FREIBURG

Approximation Ratio

UNI
|

FREIBURG

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

* OPT = 0 : optimal objective value
ALG = 0O : objective value achieved by the algorithm

* Approximation Ratio a:
ALG é—og‘).vabﬁg

Minimization: a = max —
input instances OPT <—

o OPT

Maximization: a = max -

input instances ALG

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Example: Load Balancing

UNI
FREIBURG

We are given:
* m machines My, ..., M,,,
* n jobs, processing time of job i is t;

Goal:

* Assign each job to a machine such that the makespan is
minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore
want to get a good approximation for the problem.

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Greedy Algorithm

UNI
|

FREIBURG

There is a simple greedy algorithm:
 Go through the jobs in an arbitrary order

* When considering job i, assign the job to the machine that
currently has the smallest load.

Example: 3 machines, 12 jobs
3| 4 |[2]|3 6 4 4 |13/]2 5

dy Assignment: Optimal Assighnment:

— i
Mq: 31 6 |1 5 Mq: 3 4 |2 311
M,:| 4 4 | 3 M,: 6 4 |3
M3:12|3 | 4 |2 Mj: | 4 (23] 5

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Greedy Analysis

UNI

FREIBURG

 We will show that greedy gives a 2-approximation

* To show this, we need to compare the solution of greedy with
an optimal solution (that we can’t compute)

* Lower bound on the optimal makespan T™:

n
1
Tz
m

=1

—

e Second lower bound on optimal makespan T*:

T™ = max t;

~ 1<i<n

.)

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI

Greedy Analysis

FREIBURG

Theorem: The greedy algorithm has approximation ratio < 2, i.e,,
for the makespan T of the greedy solution, we have T < 2T".
Proof:

* For machine k, let T}, be the time used by machine k

* Consider some macahine I_i forwhichT; =T

—_—-—
* Assume that job j is the last one schedule on M;:

Mi: T_ti ti
— — Tg
< T

—-—

* When job j is scheduled, M; has the minimum load
_r..‘t-) IS sucallast (oo
\fl . /\—t 7T,'E.))‘3\4& load 2 w- (T-1%5)
s T

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Can We Do Better? .. = _ 1w

—

V\s(‘uv\-\)

The analysis of the greedy algorithm is almost tight:
* Example withn = m(m — 1) + 1 jobs
* Jobsl,...,n—1=m(m—1) have t; =_1,job nhast, =m

Greedy Schedule: 5T /
M . 1111 cee 1 tn= /_\.A =
' = M. [+ (
My 1201 g walespa M,z'- Q-— - b
a 0! \
Mzt ity - 1 gy |
—_—— J
M, m- - — —0
-—
M1 o~y
" ~ .
M-\ wolasgonn s W

_
Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
|

FREIBURG

Improving Greedy

Bad case for the greedy algorithm:
One large job in the end can destroy everything

Idea: assign large jobs first il wem provlens tovveld

walk|

Modified Greedy Algorithm: - ==
1. Sortjobs by decreasing lengths.t.t; = t, =2--=>t,

2. Apply the greedy algorithm as before (in the sorted order)

Lemma:lfn>m: T ">t +tyne1 = 241 -

Proof: ‘em. ==

 Two of the first m 4+ 1 jobs need to be scheduled on the same
machine

 Jobs mand m + 1 are the shortest of these jobs

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
|

FREIBURG

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio < 3/,,.

Proof: Mo

\ T—-e,u -f)- \
* WeshowthatT <3/, -T" I o

* As before, we consider the machine M; withT; =T

—

* Job j (of length t;) is the last one sché/_d’uled on machine M;

* Ifjistheonlyjobon M; wehavel =T" T
. : —
* Otherwise, we havej >m 41 =T

— The first m jobs are assigned to m distinct machines

N 2 2 2
)2\’_5_ \/\/2/313 / m=2
T Wodifrel Greadsy .
S WO oo . Y N s M e
2: T % (& (% (| 20— 1% »
"-1—/3

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
|

FREIBURG

Metric TSP

UNI

FREIBURG

Input:
 Set V of n nodes (points, cities, locations, sites)
* Distance functiond:V XV - R, i.e., d(u,v) is dist fromu to v

 Distances define a metricon V:
d(u,v) =d(v,u) =0, dlu,v) =0 u=v
vu,v,w €V :d(u,v) < d(u,) iy
;_\r o w w'
A-‘\%e(:l-b« u \
Solution: O
* Ordering/permutation vl,’vz, e, Up of the vertices
e Length of TSP path: Y1} d(v;, v;41)
* Length of TSP tour: d(vy,v,) + Yoy d(v;, Vi41) -

Vv

Goal:
* Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2015/16 Fabian Kuhn

10

Metric TSP

UNI

FREIBURG

* The problem is NP-hard

* We have seen that the greedy algorithm (always going to the
nearest unvisited node) gives an O (log n)-approximation

* Can we get a constant approximation ratio?

e We will see that we can...

Algorithm Theory, WS 2015/16 Fabian Kuhn

11

UNI

TSP and MST w(UST) = @@ TSTyer

FREIBURG

Claim: The length of an optimal TSP path is lower bounded by the
weight of a minimum spanning tree

Proof:
 ATSP path is a spanning tree, it’s length is the weight of the tree

w(KSﬂ éTS??)m—\ s VS

T——

—_—

Corollary: Since an optimal TSP
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

The MST Tour

UNI
|

FREIBURG

Walk around the MST...

Algorithm Theory, WS 2015/16 Fabian Kuhn

13

The MST Tour

UNI
FREIBURG

Walk around the MST...
Cost (walk) = 2 - weight(MST)

Cost (tour) < 2 - weight(MST) '/Q

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Approximation Ratio of MST Tour

UNI
|

FREIBURG

Theorem: The MST TSP tour gives a 2-approximation for the
metric TSP problem.

Proof:
* Triangle inequality = length of tour is at most 2 - weight(MST)
* We have seen that weight(MST) < opt. tour length

Can we do even better?

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

UNI

Metric TSP Subproblems

FREIBURG

Claim: Given a metric (V, d) and (V’ d) for V' €V, the optimal
TSP path/tour of (V' d) is at most as large as s the ¢ optimal TSP
path/tour of (V, d).

Optimal TSP tour of
nodes 1,2,...,12

Induced TSP tour for
nodes1,2,5,8,10,12

blue tour < green tour

Algorithm Theory, WS 2015/16

TSP and Matching

(

J
* Consider a metric TSP instance (V/, d) with an even number of

nodes |V/] P
\/ —_—— 0

~— -—‘

* Recall that a perfect matching is a matching M € VV X IV such
that every node of V is incident to an edge of M.

* Because |V| is even and because in a metric TSP, there is an
edge between any two nodes u, v € V, any partition of I/ into
|V|/2 pairs is a perfect matching.

e

* The weight of a matching M is the sum of the distances
represented by all edges in M:

WOD =D)

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

UNI
|

FREIBURG

UNI

TSP and Matching o(N) = ST

FREIBURG

Lemma: Assume we are given a TSP instance (I, d) with an even
number of nodes. The length of an optimal TSP tour of (I/,d) is at

least twice the weight of a minimum weight perfect matching of
(V,d).

Proof:

 The edges of a TSP tour can be partitioned into 2 perfect
matchings

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Minimum Weight Perfect Matching

UNI
|

FREIBURG

Claim: If [V/] is even, a minimum weight perfect matching of (V, d)
can be computed in polynomial time

Proof Sketch:

* We have seen that a maximum matching in an unweighted
graph can be computed in polynomial time

f With a more complicated algorithm, also a maximum weighteo}

matching can be computed in polynomial time

* In acomplete graph, a maximum weighted matching is also a

(maximum weight) perfect Talcb-",rl»g- - 2 (O d)
* Define weight w(u,v) := D —d(u,v) M 2eM
—— e =7

vy 3D -2

* A maximum weight perfect matching for (V/, W)MiS a minimum
weight perfect matching for (V, d)

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Algorithm Outline

UNI
FREIBURG

Problem of MST algorithm:
* Every edge has to be visited twice

Goal:

 Get agraph on which every edge only has to be visited once
(and where still the total edge weight is small compared to an
optimal TSP tour)

_Euler Tours:

* A tour that visits each edge of a graph exactly once is called an
Euler tour

* An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

* That’s definitely not true for a tree, but can we modify our
MST suitably?

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

Euler Tour

UNI
|

FREIBURG

|

Theorem: A connected (multi-)graph G has an Euler tour if and only
if every node of G has even degree. '

\ b
Proof: /}//v %

* If G has an odd degree node, it clearly cannot have an Euler tour
* If G has only even degree nodes, a tour can be found recursively:

1. Start at some node T
2. Aslong as possible, follow '/T\
an unvisited edge /\

— Gives a partial tour, the remaining é/{/ﬁ/‘"

graph still has even degree

3. Solve problem on remaining components recursixély
4. Merge the obtained tours into one tour that visits all edges

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

UNI

TSP Algorithm = agw = 2 Tl e

veV

FREIBURG

|
Qv W w55

Compute MST T -
Voaq: nodes that have an odd degree in T (|V,q44] is even)

_—

Compute min weight perfect matching M of (Vodd,g)

i o

(V,T U M) is a (multi-)graph .
with even degrees

w(KUsT) & TSPt
W(ﬂ\ = %mwr

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

UNI

. oo+
14"‘\‘ Lr\f;?qm'
TSP Algorithm W5 ek

FREIBURG

! v
5. Compute Euler touron (V,T U M)

6. Total length of Euler tour < % - TSPopTt

—_—

———

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice

Algorithm Theory, WS 2015/16 Fabian Kuhn 23

TSP Algorithm

UNI
FREIBURG

* The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation
ratio of at most 3/,.

—

Proof:
 The length of the Euler touris < 3/, - TSPypr

* Because of the triangle inequality, taking shortcuts can only
make the tour shorter

Algorithm Theory, WS 2015/16 Fabian Kuhn 24

FREIBURG

Set Cover S 8

W
A
UNI

Input: (M/\\/v_u'ﬁ—
 Asetof eIements=X= and a coIIection}S of subsets X, i.e., § € 2%

— such that Use‘:sS =;X;

Set Cover:

* Asetcover Cof (X,8) is asubset of the sets & which covers X:

[Js =

SeC

Example:

Algorithm Theory, WS 2015/16 Fabian Kuhn 25

Minimum (Weighted) Set Cover

Minimum Set Cover: carlineli

UNI
|

FREIBURG

* @Goal: Find a set cover C of smallest possible size
— i.e.cover X with as few sets as possible

Minimum Weighted Set Cover:
* EachsetS € S has aweight wg > 0
* Goal: Find a set cover C of minimum weight

Example:

| X

Algorithm Theory, WS 2015/16 Fabian Kuhn

Minimum Set Cover: Greedy Algorithm

UNI
FREIBURG

Greedy Set Cover Algorithm:

« StartwithC =0

* Ineachstep,addsetS € § \ C to C s.t. S covers as many

uncovered elements as possible

Example:

Algorithm Theory, WS 2015/16

Fabian Kuhn

27

Weighted Set Cover: Greedy Algorithm :

UNI
FREIBURG

Greedy Weighted Set Cover Algorithm: = e)\ L

P wno
ot

e StartwithC =0 s “":

* Ineachstep,addsetS € § \ C with the best weight per
newly covered element ratio (set W|th best efficiency):

1—
S
E

S = arg min

SES\C |S \ UTEC’TI o] WL? elomerabs

Analysis of Greedy Algorithm:

* Assign a price p(x) to each element x € X:
The efficiency of the set when covering the element

e If covering x with set §, if partial cover |s C before adding S:

W Mg 2
p(k) =
|5 \ UTECT| %_(?"0 = 2"% \
e x
i Sécw}\\-.&gwﬂ

Algorithm Theory, WS 2015/16 Fabian Kuhn

Weighted Set Cover: Greedy Algorithm

UNI
|

FREIBURG

Example:
* UniverseX ={1,2,3,4,5,6,7,8,9,10}
e Setsd$ = {51’52153'54155'56}

S, ={1,2/3,4,5}, wg, =
SZ = {21 6, 7}7 WSZ =
= S3 ={1,6,7,8,9}, W

S4- — {Z4;Z 9; 10};
Se ={1,3,5,6,7,8,9,10}, ws
Se = 19,10},

S
[

I
jw o o I!-[:‘r—\ b

S
[

Algorithm Theory, WS 2015/16 Fabian Kuhn

29

UNI

Weighted Set Cover: Greedy Algorithm

FREIBURG

Lemma: Consideraset S = {x{,x,, ..., X} € S be asetand
assume that the elements are covered in the order x4, x5, ..., Xj
by the greedy algorithm (ties broken arbitrarily).

Ws

Then, the price of element x; is at most p(x;) < o

X)) < Ws < Ws
(? \] = : ?(Xl) -~ k—\

= =

Algorithm Theory, WS 2015/16 Fabian Kuhn 30

Weighted Set Cover: Greedy Algorithm

UNI
|

FREIBURG

Lemma: Consideraset S = {x{,x,, ..., X} € S be asetand
assume that the elements are covered in the order x4, x5, ..., Xj
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x; is at most p(x;) < kfvl-il

Corollary: The total price of aset S € § of size |S| = k is
K

1
zp(x)SWS-Hk, where Hk=2—.S1+lnk

l —_—
XES =1

/

Lo,]
= W(mﬂxxm---w(méws(k FiX e T >

T —
(omamey Hk

Algorithm Theory, WS 2015/16 Fabian Kuhn 31

Weighted Set Cover: Greedy Algorithm :

UNI

Corollary: The total price of aset S € S of size |S| = k is
K

1
ZP(x)SWS-Hk, where HR=Z?S1+lnk

XES =1

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithm is at most HS <1+ Ins, whereg

is the cardinality of the Iargest set (s = max |S|)_L< H, < (+ZM
OFT (et cover C-ko\‘i *‘,Sz_\“"c PR

:
PP s

Yohal QF-CQ = (W AWe)" -\-(9

__/ z
Algorithm Theory, WS 2015/16 Fabian Kuhn 32

FREIBURG

Set Cover Greedy Algorithm

UNI

Can we improve this analysis? QM; _ 2.0

e

No! Even for the unweighted minimum set cover problem, the

approximation ratio of the greedy algorithm is = (1 —0(1)) -In s.

e if sisthe size of the largest set... (s can be linear in n)

Let’s show that the approximation ratio is at least Q(logn)...

= |5 A —

@V OPT = 2
2 GREEDY > log, n

Algorithm Theory, WS 2015/16 Fabian Kuhn 33

FREIBURG

