

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- OPT ≥ 0 : optimal objective value
 ALG ≥ 0 : objective value achieved by the algorithm
- Approximation Ratio α :

Minimization:
$$\alpha := \max_{\substack{\text{input instances} \\ \text{input instances}}} \frac{ALG}{OPT}$$

Maximization: $\alpha := \max_{\substack{\text{input instances} \\ \text{input instances}}} \frac{OPT}{ALG}$

Example: Load Balancing

We are given:

- m machines $M_1, ..., M_m$
- n jobs, processing time of job i is t_i

Goal:

Assign each job to a machine such that the makespan is minimized

makespan: largest total processing time of any machine

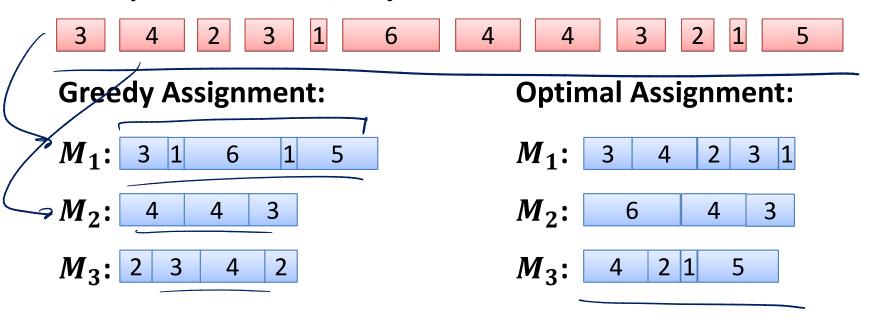
The above load balancing problem is NP-hard and we therefore want to get a good approximation for the problem.

Greedy Algorithm

There is a simple greedy algorithm:

- Go through the jobs in an arbitrary order
- When considering job i, assign the job to the machine that currently has the smallest load.

Example: 3 machines, 12 jobs



Greedy Analysis

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^{n} t_i$$

• Second lower bound on optimal makespan T^* :

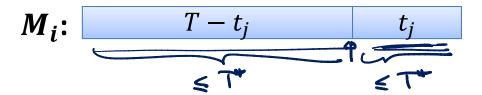
$$T^* \ge \max_{1 \le i \le n} t_i$$

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$.

Proof:

- For machine k, let $\underline{T_k}$ be the time used by machine k
- Consider some machine $\underline{\underline{M_i}}$ for which $\underline{T_i} = \underline{T}$
- Assume that job j is the last one schedule on M_i :



• When job j is scheduled, M_i has the minimum load

Can We Do Better?

The analysis of the greedy algorithm is almost tight:

- Example with n = m(m-1) + 1 jobs
- Jobs $1, \dots, n-1=m(m-1)$ have $t_i=1$, job n has $t_n=\underline{m}$

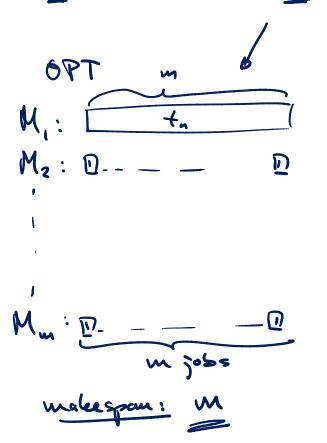
Greedy Schedule:

$$M_1$$
: 1111 ... 1 $t_n = m$

$$M_2$$
: 1111 ... 1 malespan of greedy:

$$M_3$$
: 1111 ... 1 $2m-1$

$$M_m: 1111 \cdots 1$$



Improving Greedy

Bad case for the greedy algorithm:

One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

- 1. Sort jobs by decreasing length s.t. $t_1 \ge t_2 \ge \cdots \ge t_n$
- 2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If
$$n > m$$
: $T^* \ge t_m + t_{m+1} \ge 2t_{m+1}$
Proof:

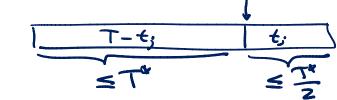
- Two of the first m+1 jobs need to be scheduled on the same machine
- Jobs m and m+1 are the shortest of these jobs

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio $\leq 3/2$.

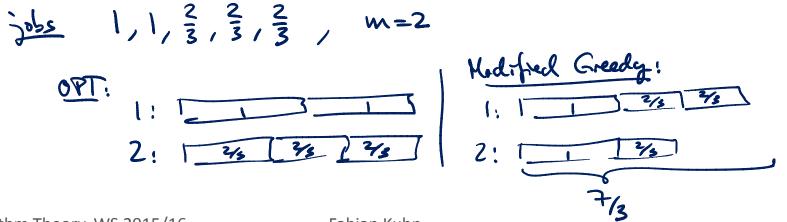
Proof:

• We show that $T \leq 3/2 \cdot T^*$



- As before, we consider the machine M_i with $T_i = T$
- Job j (of length t_j) is the last one scheduled on machine M_i
- If j is the only job on M_i , we have $\underline{T} = \underline{T}^*$

- Otherwise, we have $j \ge m + 1$
 - The first m jobs are assigned to m distinct machines



Metric TSP

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v) is dist from u to v
- Distances define a metric on V:

$$d(u,v) = d(v,u) \ge 0,$$
 $d(u,v) = 0 \Leftrightarrow u = v$
 $\forall u, v, w \in V : d(u,v) \le d(u,w) + d(w,v)$

- Ordering/permutation v_1, v_2, \dots, v_n of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Metric TSP

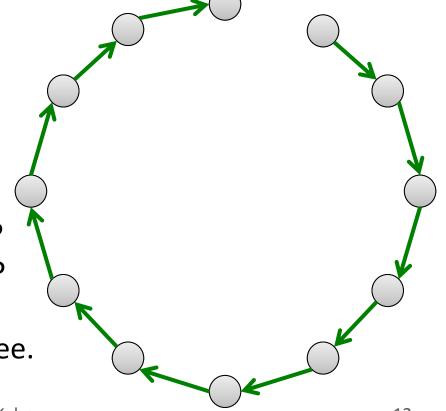
- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

Proof:

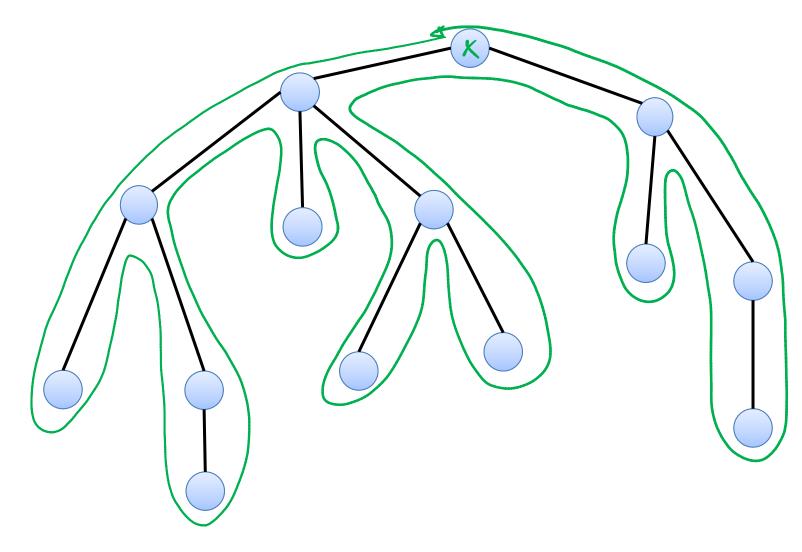
A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.



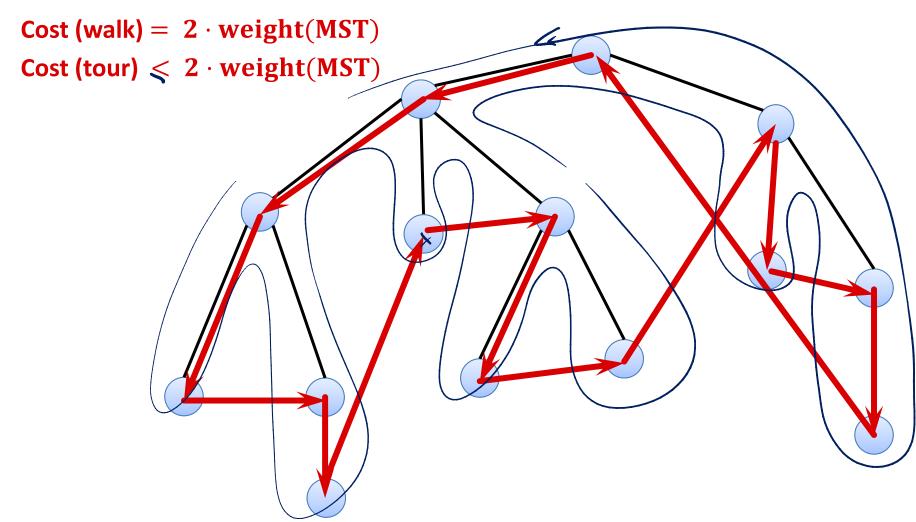
The MST Tour

Walk around the MST...



The MST Tour

Walk around the MST...



Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

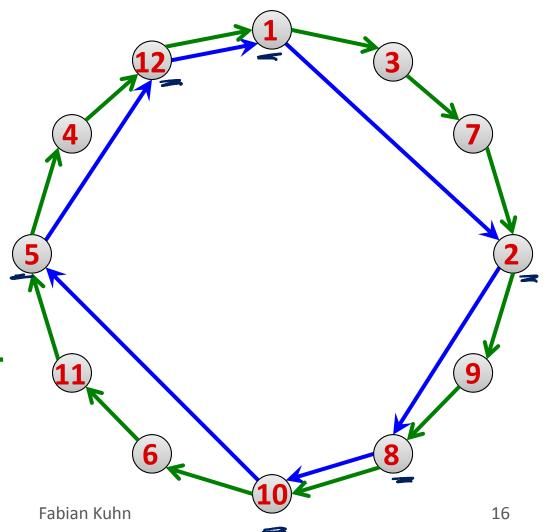
Claim: Given a metric (V,d) and (V',d) for $V' \subseteq V$, the optimal TSP path/tour of (V',d) is at most as large as the optimal TSP

path/tour of (V, d).

Optimal TSP tour of nodes 1, 2, ..., 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12

blue tour ≤ green tour



TSP and Matching

- Consider a metric TSP instance (V,d) with an even number of nodes |V|
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$w(M) = \sum_{\{u,v\}\in M} d(u,v)$$

TSP and Matching

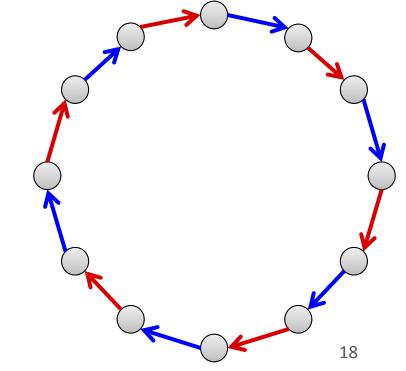
$$\omega(M) \leq \frac{1}{2} TSP_{OPT}$$

Lemma: Assume we are given a TSP instance (V, d) with an even number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of (V, d).

Proof:

The edges of a TSP tour can be partitioned into 2 perfect

matchings



Minimum Weight Perfect Matching

Claim: If |V| is even, a minimum weight perfect matching of (V, d)can be computed in polynomial time

Proof Sketch:

- · We have seen that a maximum matching in an unweighted graph can be computed in polynomial time
- With a more complicated algorithm, also a maximum weighted matching can be computed in polynomial time
- In a complete graph, a maximum weighted matching is also a
- (maximum weight) perfect matching Define weight $w(u,v) \coloneqq D d(u,v)$ • Define weight $w(u,v) \coloneqq D - d(u,v)$ wax $\sum_{wax} (D - d(e))$ • A maximum weight perfect matching for (V,w) is a minimum
- weight perfect matching for (V, d)

Algorithm Outline

Problem of MST algorithm:

Every edge has to be visited twice

Goal:

 Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)

Euler Tours:

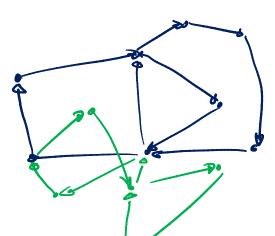
- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

Euler Tour

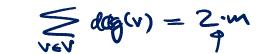
Theorem: A connected (multi-)graph G has an Euler tour if and only if every node of G has even degree.

Proof:

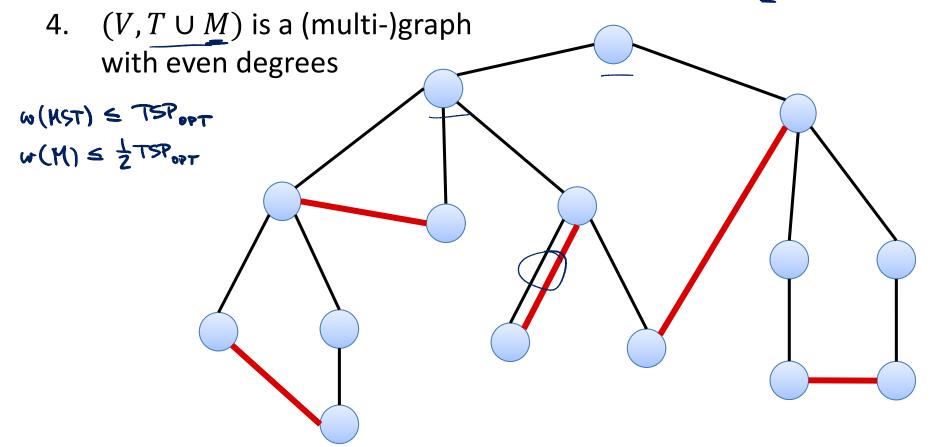
- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
 - Gives a partial tour, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges



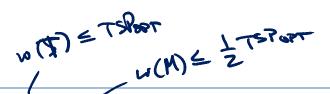
TSP Algorithm



- 1. Compute MST T
- 2. V_{odd} : nodes that have an odd degree in $T(|V_{\text{odd}}|)$ is even)
- 3. Compute min weight perfect matching M of $(V_{\text{odd}}, \underline{d})$



TSP Algorithm



- 5. Compute Euler tour on $(V, T \cup M)$
- 6. Total length of Euler tour $\leq \frac{3}{2} \cdot TSP_{OPT}$

Get TSP tour by taking shortcuts wherever the Euler tour visits a node twice

TSP Algorithm

The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $^{3}/_{2}$.

Proof:

- The length of the Euler tour is $\leq \frac{3}{2} \cdot \text{TSP}_{\text{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Set Cover

Input:

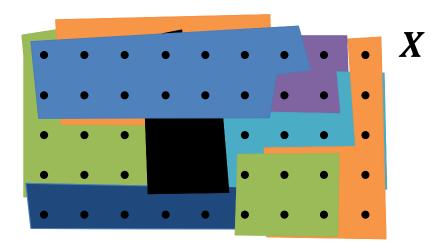
UNI verse

- A set of elements X and a collection S of subsets X, i.e., $S \subseteq 2^X$
 - such that $\bigcup_{S \in \mathcal{S}} S = X$

Set Cover:

• A set cover \mathcal{C} of (X, \mathcal{S}) is a subset of the sets \mathcal{S} which covers X:

$$\bigcup_{S \in \mathcal{C}} S = X$$



Minimum (Weighted) Set Cover

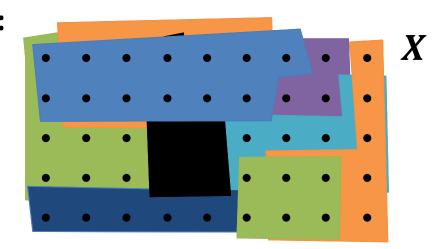
Minimum Set Cover:

cardinality

- Goal: Find a set cover \mathcal{C} of smallest possible size
 - i.e. cover X with as few sets as possible

Minimum Weighted Set Cover:

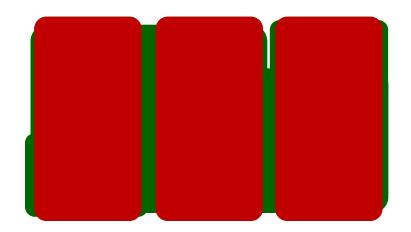
- Each set $S \in S$ has a weight $w_S > 0$
- Goal: Find a set cover \mathcal{C} of minimum weight



Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $\mathcal{C} = \emptyset$
- In each step, add set $S \in S \setminus C$ to C s.t. S covers as many uncovered elements as possible



Greedy Weighted Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set $S \in S \setminus C$ with the best weight per newly covered element ratio (set with best efficiency):

$$S = \arg\min_{S \in S \setminus C} \frac{W_S}{|S| |U_{T \in C} |T|} \text{ to f newly covered}$$

Analysis of Greedy Algorithm:

- Assign a price p(x) to each element $x \in X$: The efficiency of the set when covering the element
- If covering x with set S, if partial cover is C before adding S:

$$p(x) = \frac{W_S}{|S \setminus U_{T \in C} T|} \qquad \text{in the end}$$

$$\sum_{x \in X} p(x) = \sum_{S \in C} w_S$$
Fabian Kuhn
$$\sum_{x \in X} p(x) = \sum_{S \in C} w_S$$

 $W_{S_1} = 4$

- Universe $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- Sets $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$

$$S_1 = \{1, 2, 3, 4, 5\},\$$

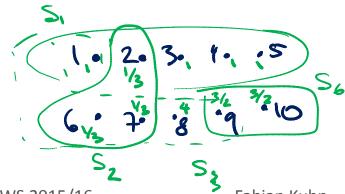
$$S_2 = \{2, 6, 7\},$$
 $W_{S_2} = 1$

$$S_3 = \{1, 6, 7, 8, 9\}, \qquad w_{S_3} = 4$$

$$S_4 = \{2, 4, 7, 9, 10\}, \qquad w_{S_4} = 6$$

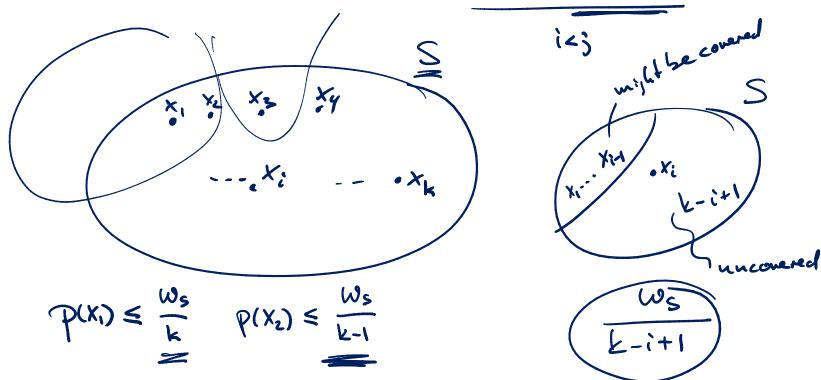
$$S_5 = \{1, 3, 5, 6, 7, 8, 9, 10\}, \quad w_{S_5} = 9$$

$$S_6 = \{9, 10\}, \qquad w_{S_6} = 3$$



Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$



Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

Corollary: The total price of a set $S \in \mathcal{S}$ of size |S| = k is

$$\sum_{x \in S} p(x) \leq w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \leq 1 + \ln k$$

$$= p(x_i) + p(x_2) + \dots + p(x_k) \leq \omega_S \left(\frac{1}{k} + \frac{1}{k-1} + \frac{1}{k-2} + \dots + \frac{1}{k}\right)$$
Lemma

Corollary: The total price of a set $S \in S$ of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_s \leq 1 + \ln s$, where s is the cardinality of the largest set ($s = \max_{S \in S} |S|$).

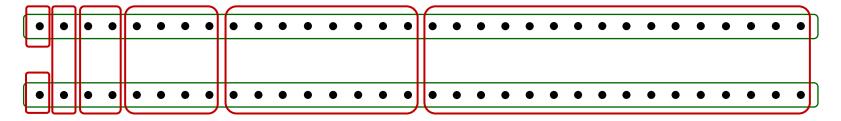
Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln s$.

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...



$$OPT = 2$$

 $GREEDY \ge \log_2 n$