Approximation Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
- i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in \mathcal{S}$ has a weight $w_{S}>0$
- Goal: Find a set cover \mathcal{C} of minimum weight

Example:

$$
x, S \leq 2^{x}
$$

Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

- Start with $\mathcal{C}=\varnothing$
- In each step, add set $S \in \mathcal{S} \backslash \mathcal{C}$ with the best weight per newly covered element ratio (set with best efficiency):

$$
S=\arg \min _{S \in \mathcal{S} \backslash \mathcal{C}} S \backslash{ }^{\bigcup_{T \in \mathcal{C}} T} \mid
$$

Analysis of Greedy Algorithm:

- Assign a price $p(x)$ to each element $x \in X$:

The efficiency of the set when covering the element

- If covering x with set S, if partial cover is \mathcal{C} before adding S :

$$
\underline{\underline{(x)}}=\frac{w_{S}}{\left|S \backslash \mathrm{U}_{T \in \mathcal{C}} T\right|}
$$

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set $S \in \mathcal{S}$ of size $|S|=k$ is

$$
\sum_{x \in S} p(x) \leq w_{S} \cdot H_{k}, \quad \text { where } H_{k}=\sum_{i=1}^{k} \frac{1}{i} \leq 1+\ln k
$$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $\boldsymbol{H}_{s} \leq \mathbf{1}+\ln s$, where s is the cardinality of the largest set ($s=\max _{S \in S}|S|$).

Set Cover Greedy Algorithm

Can we improve this analysis?
No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq(1-o(1)) \cdot \ln s$.

- if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n) \ldots$

OPT $=2$
GREEDY $\geq \log _{2} n$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...
Can we improve the approximation ratio?
No, unfortunately not, unless $\mathrm{P} \approx \mathrm{NP}$

Feige showed that unless NP has deterministic $n^{O(\log \log n)}$-time algorithms, minimum set cover cannot be approximated better than by a factor $(1-o(1)) \cdot \ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
- PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
- Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Connection to Linear Programming
Linear Programming:

- minimize/maximize a linear function (over \mathbb{R})

$$
\begin{aligned}
& 2 x_{1}-3 x_{3}+x_{5} \leqslant 7 \\
& x_{i} \in \mathbb{R} \\
& x_{i} \in \mathbb{R}
\end{aligned}
$$

- subject to linear side constraints

Set Cover as an Integer Linear Program (LP):

- Given elements X and sets $\mathcal{S} \subseteq 2^{X}$
- Define a variable $\alpha_{S} \in\{\underline{0}, \underline{1}\}$ for each set $S \in \mathcal{S}$

$$
\begin{aligned}
& \min \sum_{S \in S} w_{S} \cdot \stackrel{\alpha_{S}}{\underline{\alpha}} \quad \sum \omega_{s} \alpha_{s}^{*} \leqslant \mid \cdot\left(C^{*}\right) \\
& \forall x \in X: \sum_{\underline{S} \in \mathcal{S}: \underline{x \in S}} \alpha_{S} \geq \frac{\downarrow}{=} \\
& \forall S \in \mathcal{S}: \alpha_{S} \geq 0 \quad \frac{\text { LP relaxation }}{\alpha_{s}=0.5}
\end{aligned}
$$

LP Duality
Strong LP Duality: Every linear program (LP) has a dual LP with the same optimal value of the objective function.

x, y feasible:
x^{*}, y^{*} optimal sol.

Dual LP:

$$
\begin{aligned}
& \left.\max \frac{b^{T} \boldsymbol{y}}{} \begin{array}{l}
\text { s.t. } \underline{A}^{T} \cdot y \leq c \\
y \geq 0
\end{array}\right] \\
& b^{\top} y \leq c^{\top} x \quad \text { (wear duality) } \\
& b^{\top} y^{*}=c^{\top} x
\end{aligned}
$$

(Fractional) Set Cover LP: sire of (Fractional) Set Cover Dual LP:
price we shoved:

$$
\begin{aligned}
& \text { we showed: } \sum_{x \in S} p(x) \leq w_{s} \cdot H_{|s|} \\
& \forall s \subset S: H
\end{aligned}
$$

$$
\begin{aligned}
& \text { dual } \\
& \text { fitting }
\end{aligned} \leq \xrightarrow[\sim]{\omega_{s} \cdot H_{n}}
$$

$$
\begin{aligned}
& \min \sum_{S \in \mathcal{S}} w_{S} \cdot \alpha_{S} \quad \begin{array}{c}
\text { ready } \\
\text { solution } \\
\max
\end{array} \sum_{x \in X} \beta_{x}= \\
& \forall x \in X: \sum_{S \in \mathcal{S}: x \in S} \alpha_{S} \geq 1 \\
& \forall S \in \mathcal{S}: \alpha_{S} \geq 0 \\
& p(x) \text { for each element } \\
& \max \sum \beta_{x}
\end{aligned}
$$

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph $G=(V, E)$ such that

$$
\forall\{\boldsymbol{u}, \boldsymbol{v}\} \in E, \quad\{\boldsymbol{u}, \boldsymbol{v}\} \cap S \neq \varnothing
$$

Minimum Vertex Cover:

$$
2 \text {-approx. }
$$

- Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

Set Cover: Special Cases

Dominating Set:

Given a graph $G=(V, E)$, a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in \overline{V \backslash S}$, there is a neighbor $v \in S$.

greedy: approx. ratio: $H_{\Delta+1} \approx \ln \Delta$

Minimum Hitting Set

Given: Set of elements \underline{X} and collection of subsets $\mathcal{S} \subseteq 2^{X}$

- Sets cover $X: \cup_{S \in S} S=X$

$$
\forall S \in \mathcal{S}: S \widehat{\cap H \neq \emptyset}
$$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

Sets

Elements

Knapsack

- \underline{n} items $1, \ldots, n$, each item has weight $\underline{w}_{i}>0$ and value $\underline{v}_{i}>0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most W and total value is maximized:

- E.g.: jobs of length w_{i} and value v_{i}, server available for W time units, try to execute a set of jobs that maximizes the total value

Knapsack: Dynamic Programming Alg.

We have shown:

- If all item weights w_{i} are integers, using dynamic programming, the knapsack problem can be solved in time $O(n W)$
- If all values \underline{v}_{i} are integers, there is another dynamic progr. algorithm that runs in time $O\left(n^{2} \underline{\underline{V}}\right)$, where $\underline{\underline{V}}$ is the max. value.

Problems:

- If W and V are large, the algorithms are not polynomial in n
- If the values or weights are not integers, things are even worse (and in general, the algorithms cannot even be applied at all)

Idea:

- Can we adapt one of the algorithms to at least compute an approximate solution?

Approximation Algorithm

- The algorithm has a parameter $\varepsilon>0$
- We assume that each item alone fits into the knapsack (w.l.o.g.)
- We define:

$$
\underline{V}:=\max _{1 \leq i \leq n} v_{i}, \quad \forall i: \widehat{v_{i}}:=\left\lceil\frac{v_{i} n}{\varepsilon V}\right\rceil, \quad \widehat{V}:=\max _{1 \leq i \leq n} \widehat{v}_{i}
$$

- We solve the problem with integer values $\widehat{\hat{v}_{i}}$ and weights \underline{w}_{i} using dynamic programming in time $O\left(\underline{n}^{2} \cdot \hat{V}\right)$
- If solution value $<V$, we take item with value V instead

Theorem: The described algorithm runs in time $O\left(n^{3} / \varepsilon\right)$. Proof:

$$
\widehat{V}=\max _{1 \leq i \leq n} \widehat{v}_{i}=\max _{1 \leq i \leq n}\left\lceil\frac{v_{i} n}{\varepsilon V}\right\rceil=\left\lceil\frac{\mathrm{X} n}{\varepsilon \mathrm{~K}}\right\rceil=\left\lceil\frac{n}{\varepsilon}\right\rceil
$$

