
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝑋 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example:

𝑿

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per
newly covered element ratio (set with best efficiency):

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖ 𝑇𝑇∈𝒞

Analysis of Greedy Algorithm:

• Assign a price 𝑝 𝑥 to each element 𝑥 ∈ 𝑋:
The efficiency of the set when covering the element

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆:

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖ 𝑇𝑇∈𝒞

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

 𝑝 𝑥

𝑥∈𝑆

≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =
1

𝑖

𝑘

𝑖=1

≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithm is at most 𝑯𝒔 ≤ 𝟏 + 𝐥𝐧 𝒔, where 𝑠
is the cardinality of the largest set (𝑠 = max

𝑆∈𝒮
|𝑆|).

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the

approximation ratio of the greedy algorithm is ≥ 1 − 𝑜 1 ⋅ ln 𝑠.

• if 𝑠 is the size of the largest set... (𝑠 can be linear in 𝑛)

Let’s show that the approximation ratio is at least Ω log 𝑛 ...

𝐎𝐏𝐓 = 𝟐

𝐆𝐑𝐄𝐄𝐃𝐘 ≥ 𝐥𝐨𝐠𝟐 𝒏

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Set Cover: Better Algorithm?

An approximation ratio of ln 𝑛 seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P ≈ NP

Feige showed that unless NP has deterministic 𝑛𝑂 log log 𝑛 -time
algorithms, minimum set cover cannot be approximated better

than by a factor 1 − 𝑜 1 ⋅ ln 𝑛 in polynomial time.

• Proof is based on the so-called PCP theorem
– PCP theorem is one of the main (relatively) recent advancements in

theoretical computer science and the major tool to prove approximation
hardness lower bounds

– Shows that every language in NP has certificates of polynomial length
that can be checked by a randomized algorithm by only querying a
constant number of bits (for any constant error probability)

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Connection to Linear Programming

Linear Programming:

• minimize/maximize a linear function (over ℝ)

• subject to linear side constraints

Set Cover as an Integer Linear Program (LP):

• Given elements 𝑋 and sets 𝒮 ⊆ 2𝑋

• Define a variable 𝛼𝑆 ∈ 0,1 for each set 𝑆 ∈ 𝒮

min 𝑤𝑆 ⋅ 𝛼𝑆

𝑆∈𝒮

∀𝑥 ∈ 𝑋 ∶ 𝛼𝑆

𝑆∈𝒮:𝑥∈𝑆

≥ 1

∀𝑆 ∈ 𝒮 ∶ 𝛼𝑆 ∈ 0,1 𝜶𝑺 ≥ 𝟎 LP relaxation

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

LP Duality

Strong LP Duality: Every linear program (LP) has a dual LP with
the same optimal value of the objective function.

LP:

min 𝒄𝑇𝒙
s. t. 𝐴 ⋅ 𝒙 ≥ 𝒃
 𝒙 ≥ 𝟎

Dual LP:

max𝒃𝑇𝒚
s. t. 𝐴𝑇 ⋅ 𝒚 ≤ 𝒄
 𝒚 ≥ 𝟎

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Dual Set Cover LP

(Fractional) Set Cover LP:

min 𝑤𝑆 ⋅ 𝛼𝑆

𝑆∈𝒮

 ∀𝑥 ∈ 𝑋 ∶ 𝛼𝑆

𝑆∈𝒮:𝑥∈𝑆

≥ 1

 ∀𝑆 ∈ 𝒮 ∶ 𝛼𝑆 ≥ 0

(Fractional) Set Cover Dual LP:

max 𝛽𝑥

𝑥∈𝑋

 ∀𝑆 ∈ 𝒮 ∶ 𝛽𝑥

𝑥∈𝑆

≤ 𝑤𝑆

 ∀𝑥 ∈ 𝑋: 𝛽𝑥 ≥ 0

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Set Cover: Special Cases

Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes of a graph 𝐺 = (𝑉, 𝐸) such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

• Each node has a weight

• Find a vertex cover of minimum total weight

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Set Cover: Special Cases

Dominating Set:
Given a graph 𝐺 = 𝑉, 𝐸 , a dominating set 𝑆 ⊆ 𝑉 is a subset of
the nodes 𝑉 of 𝐺 such that for all nodes 𝑢 ∈ 𝑉 ∖ 𝑆, there is a
neighbor 𝑣 ∈ 𝑆.

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

Minimum Hitting Set

Given: Set of elements 𝑋 and collection of subsets 𝒮 ⊆ 2𝑋
– Sets cover 𝑋: 𝑆𝑆∈𝒮 = 𝑋

Goal: Find a min. cardinality subset 𝐻 ⊆ 𝑋 of elements such that

∀𝑆 ∈ 𝒮 ∶ 𝑆 ∩ 𝐻 ≠ ∅

Problem is equivalent to min. set cover with roles of sets and
elements interchanged

Sets

Elements

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 > 0 and value 𝑣𝑖 > 0

• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most
𝑊 and total value is maximized:

max 𝑣𝑖

𝑖∈𝑆

s. t. 𝑆 ⊆ 1,… , 𝑛 and 𝑤𝑖 ≤ 𝑊

𝑖∈𝑆

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊 time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Knapsack: Dynamic Programming Alg.

We have shown:

• If all item weights 𝑤𝑖 are integers, using dynamic programming,
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr.
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.

Problems:

• If 𝑊 and 𝑉 are large, the algorithms are not polynomial in 𝑛

• If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

• Can we adapt one of the algorithms to at least compute an
approximate solution?

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Approximation Algorithm

• The algorithm has a parameter 𝜀 > 0

• We assume that each item alone fits into the knapsack

• We define:

𝑉 ≔ max
1≤𝑖≤𝑛

𝑣𝑖 , ∀𝑖: 𝑣𝑖 ≔
𝑣𝑖𝑛

𝜀𝑉
, 𝑉 ≔ max

1≤𝑖≤𝑛
𝑣𝑖

• We solve the problem with integer values 𝑣𝑖 and weights 𝑤𝑖
using dynamic programming in time 𝑂(𝑛2 ⋅ 𝑉)

• If solution value < 𝑉, we take item with value 𝑉 instead

Theorem: The described algorithm runs in time 𝑂 𝑛3 𝜀 .

Proof:

𝑉 = max
1≤𝑖≤𝑛

𝑣𝑖 = max
1≤𝑖≤𝑛

𝑣𝑖𝑛

𝜀𝑉
=

𝑉𝑛

𝜀𝑉
=

𝑛

𝜀

