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Minimum (Weighted) Set Cover
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Minimum Set Cover:

* @Goal: Find a set cover C of smallest possible size
— i.e., over X with as few sets as possible

Minimum Weighted Set Cover:
* EachsetS € S has aweight wg > 0
* Goal: Find a set cover C of minimum weight

Example:

| X

Algorithm Theory, WS 2015/16 Fabian Kuhn



UNI

Weighted Set Cover: Greedy Algorithm
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Greedy Weighted Set Cover Algorithm:
e StartwithC =0

* Ineachstep,addsetS € § \ C with the best weight per
newly covered element ratio (set with best efficiency):

w
S = arg min /’_S‘\

Zses\ellS \ Uree T

Analysis of Greedy Algorithm:

* Assign a price p(x) to each element x € X:
The efficiency of the set when covering the element

* If covering x with set S, if partial cover is C before adding S:
Wg

p(x) = Z S
- |S \ UTEC’T| é/\\\l‘ (is
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Weighted Set Cover: Greedy Algorithm :
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Corollary: The total price of aset S € § of size |S| = k is
K

1
Zp(x)SWS-Hk, where Hk=z—,S1+lnk
XES =1 l

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithmisat most H; < 1 4+ In s, where s
is the cardinality of the largest set (s = max |S|).
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Set Cover Greedy Algorithm
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Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the
approximation ratio of the greedy algorithm is = (1 — 0(1)) -In s.

e if sisthesize of the largest set... (s can be linear in n)

Let’s show that the approximation ratio is at least (logn)...

"
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GREEDY > log; n
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Set Cover: Better Algorithm?

An approximation ratio of In n seems not spectacular...

Can we improve the approximation ratio?
P PP KL oz)
No, unfortunately not, unless P = NP i

Feige showed that unless NP has deterministic n0Uoglogn) time

e

afg?rlthms minimum set cover cannot be approximated better
than by a factor (1 — 0(1)) - Inn in polynomial time.

* Proofis based on the so-called PCP theorem

— PCP theorem is one of the main (relatively) recent advancements in
theoretical computer science and the major tool to prove approximation
hardness lower bounds

— Shows that every language in NP has certificates of polynomial length
that can be checked by a randomized algorithm by only querying a
constant number of bits (for any constant error probability)
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Connection to Linear Programming
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Linear Programming: MWW A, X Fakaa - - AuXy
* minimize/maximize a linear function (overﬁ) D — Zxa+xe € D>

e subject to linear side constraints x:
X «2
Set Cover as an Integer Linear Program (LP):

* Given elements X and sets § € 2%
* Define a variable ag € {0,1} for eachsetS € §

|
min z wg - a; L \UC*)\

S\ 4
SE€

¢

S, VXE X 2 Ag =
= =
> SES:xES
VSeES:ag=0 LP relaxation
/d 0(5 0.5
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LP Duality
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Strong LP Duality: Every linear program (LP) has a dual LP with
the same optimal value of the objective function.

Lp:
' [
minc' x {

cT
—
s.t. A-x=>b
T x>0
?

X , ua gz«;‘btﬂ. '

S e
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Dual LP:
max b’y /

s.t. AT-y<c
y >0

T

bv(\ = c'%
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Dual Set Cover LPgZm=S(x = S@sas lw(e)
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)
(Fractional) Set Cover LP: <i*{ (Fractional) Set Cover Dual LP:

\ minz Ws * Ug Sombe«  max Z B, =

SES XEX

Vx € X : Z as =1
SES:XES
VSESiaSZO

P
(?(x) %-( Qa.l'\ QLQWUM\'

we showed s
yecS: Sgm=ws N
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Set Cover: Special Cases
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Vertex Cover: set S € V of nodes of a graph ¢ = (V, E) such that
v{u,v} € E, fu,v}Ins # 0.

<&

—Q Frmx
Minimum Vertex Cover: —

* Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

* Each node has a weight
* Find a vertex cover of minimum total weight
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Set Cover: Special Cases

UNI
FREIBURG

Dominating Set:
Given a graph G = (V,E), a dominating set S € V is a subset of
the nodes I of G such that for all nodes u ET/_\-:S’, thereis a

neighbor v € S.
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Minimum Hitting Set
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Given: Set of elementsi( and collection of subsets § € 2%
— Setscover X: Uges S = X

Goal: Find a min. cardinality subset H € X of elements such that

—_—

VSES:SNH*Q

Problem is equivalent to min. set cover with roles of sets and
elements interchanged

Sets

Elements
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Knapsack
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* nitems1,...,n, each item has weight w; >0 and value v; > 0

Knapsack (bag) of capacity W

Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:
S< f(/"‘/"‘s

X, €76 1%

s.t. S€{1,...,n}and w; < W

IES —
——

E.g.: jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value
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Knapsack: Dynamic Programming Alg.
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We have shown:

e If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time OSnW)

* If all values v v; are integers, there is another dynamic progr.
algorithm that runs in time O(Y_LFZZ_), where I/ is the max. value.

ProbleW

 IfW and V are large, the algorithms are not polynomial inn

* If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

* Can we adapt one of the algorithms to at least compute an
approximate solution?
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Approximation Algorithm
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* The algorithm has a parameter e > 0
* We assume that each item alone fits into the knapsack (Cu.ﬁ.o.;)

* We define: [ !
L
V = maxv;, Vl:vi = [— , V = max 7;
= 1<isn - 1<is<n

* We solve the problem with mteger values BL and weights w;
using dynamic programming in time O(n V)

e |f solution value <z_V we take item with value I/ instead

Theorem: The described algorithm runs in tim
l

Proof: P
Py
o v n
V = max 7; = max [ }
— 1sisn ¢ 1<l<TL $
/
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