

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
 - i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in S$ has a weight $w_S > 0$
- Goal: Find a set cover \mathcal{C} of minimum weight

S=2×

Greedy Weighted Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C with the best weight per newly covered element ratio (set with best efficiency):

$$S = \arg\min_{S \in S \setminus C} \frac{w_S}{|S \setminus \bigcup_{T \in C} T|}$$

Analysis of Greedy Algorithm:

- Assign a price <u>p(x)</u> to each element x ∈ X:
 The efficiency of the set when covering the element
- If covering x with set S, if partial cover is C before adding S:

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set $S \in S$ of size |S| = k is $\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_s \leq 1 + \ln s$, where s is the cardinality of the largest set ($s = \max_{s \in S} |S|$).

Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln s$.

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...

														-																0		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		╟																														
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		H						\leftarrow								\leftarrow																

OPT = 2 $GREEDY \ge \log_2 n$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless $P \approx NP$

Feige showed that unless NP has deterministic $n^{O(\log \log n)}$ -time algorithms, minimum set cover cannot be approximated better than by a factor $(1 - o(1)) \cdot \ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
 - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
 - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Algorithm Theory, WS 2015/16

0(1)

Connection to Linear Programming

7

a, X, +axx2+ -- - - anXn

X; ER

x. = 2

 $2x_1 - 3x_2 + x_5 \leq 7$

Linear Programming:

- minimize/maximize a linear function (over \mathbb{R})
- subject to linear side constraints

Set Cover as an Integer Linear Program (LP):

- Given elements X and sets $\mathcal{S} \subseteq 2^X$
- Define a variable $\alpha_{\underline{S}} \in \{\underline{0},\underline{1}\}$ for each set $\underline{S} \in S$

LP Duality

Strong LP Duality: Every linear program (LP) has a dual LP with the same optimal value of the objective function.

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph G = (V, E) such that $\forall \{u, v\} \in E, \quad \{u, v\} \cap S \neq \emptyset.$

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

Dominating Set:

Given a graph G = (V, E), a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \setminus S$, there is a neighbor $v \in S$.

Minimum Hitting Set

Given: Set of elements X and collection of subsets $S \subseteq 2^X$

- Sets cover $X: \bigcup_{S \in S} S = X$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that $\forall S \in S : S \cap H \neq \emptyset$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

Knapsack

- <u>*n*</u> items 1, ..., *n*, each item has weight $w_i > 0$ and value $v_i > 0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.

Problems:

- If W and V are large, the algorithms are not polynomial in n
- If the values or weights are not integers, things are even worse (and in general, the algorithms cannot even be applied at all)

Idea:

Can we adapt one of the algorithms to at least compute an approximate solution?

Algorithm Theory, WS 2015/16

Approximation Algorithm

- The algorithm has a parameter $\varepsilon > 0$
- We assume that each item alone fits into the knapsack $(\omega.l.o.g.)$
 - We define: $\underbrace{V}_{1 \le i \le n} = \max_{1 \le i \le n} v_i, \quad \forall i : \widehat{v}_i \coloneqq \left[\frac{v_i n}{\varepsilon V}\right], \quad \widehat{V} \coloneqq \max_{1 \le i \le n} \widehat{v}_i$
- We solve the problem with integer values \hat{v}_i and weights w_i using dynamic programming in time $O(n^2 \cdot \hat{V})$
- If solution value $\leq V$, we take item with value V instead

Theorem: The described algorithm runs in time $O(n^3/\varepsilon)$. **Proof:**

$$\widehat{V} = \max_{1 \le i \le n} \widehat{v_i} = \max_{1 \le i \le n} \left[\frac{v_i n}{\varepsilon V} \right] = \left[\frac{\aleph n}{\varepsilon \aleph} \right] = \left[\frac{n}{\varepsilon} \right]$$