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Minimum (Weighted) Set Cover 

Minimum Set Cover: 

• Goal: Find a set cover 𝒞 of smallest possible size 
– i.e., over 𝑋 with as few sets as possible 

 

Minimum Weighted Set Cover: 

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0 

• Goal: Find a set cover 𝒞 of minimum weight 
 

Example:  

 
𝑿 
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Weighted Set Cover: Greedy Algorithm 

Greedy Weighted Set Cover Algorithm: 

• Start with 𝒞 = ∅ 

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per 
newly covered element ratio (set with best efficiency): 
 

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖  𝑇𝑇∈𝒞

 

 

Analysis of Greedy Algorithm: 

• Assign a price 𝑝 𝑥  to each element 𝑥 ∈ 𝑋: 
The efficiency of the set when covering the element 

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆: 
 

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖  𝑇𝑇∈𝒞
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Weighted Set Cover: Greedy Algorithm 

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is 

 𝑝 𝑥

𝑥∈𝑆

≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where  𝐻𝑘 =  
1

𝑖

𝑘

𝑖=1

≤ 1 + ln 𝑘 

 

Theorem: The approximation ratio of the greedy minimum 
(weighted) set cover algorithm is at most 𝑯𝒔 ≤ 𝟏 + 𝐥𝐧 𝒔, where 𝑠 
is the cardinality of the largest set (𝑠 = max

𝑆∈𝒮
|𝑆|). 
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Set Cover Greedy Algorithm 

Can we improve this analysis? 
 

No! Even for the unweighted minimum set cover problem, the 

approximation ratio of the greedy algorithm is ≥ 1 − 𝑜 1 ⋅ ln 𝑠. 

• if 𝑠 is the size of the largest set... (𝑠 can be linear in 𝑛) 
 

Let’s show that the approximation ratio is at least Ω log 𝑛 ... 

𝐎𝐏𝐓 = 𝟐 

𝐆𝐑𝐄𝐄𝐃𝐘 ≥ 𝐥𝐨𝐠𝟐 𝒏 
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Set Cover: Better Algorithm? 

An approximation ratio of ln 𝑛 seems not spectacular... 
 

Can we improve the approximation ratio? 
 

No, unfortunately not, unless P ≈ NP 
 

Feige showed that unless NP has deterministic 𝑛𝑂 log log 𝑛 -time 
algorithms, minimum set cover cannot be approximated better 

than by a factor 1 − 𝑜 1 ⋅ ln 𝑛 in polynomial time. 

• Proof is based on the so-called PCP theorem 
– PCP theorem is one of the main (relatively) recent advancements in 

theoretical computer science and the major tool to prove approximation 
hardness lower bounds 

– Shows that every language in NP has certificates of polynomial length 
that can be checked by a randomized algorithm by only querying a 
constant number of bits (for any constant error probability) 
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Connection to Linear Programming 

Linear Programming: 

• minimize/maximize a linear function (over ℝ) 

• subject to linear side constraints 
 

Set Cover as an Integer Linear Program (LP): 

• Given elements 𝑋 and sets 𝒮 ⊆ 2𝑋 

• Define a variable 𝛼𝑆 ∈ 0,1  for each set 𝑆 ∈ 𝒮 
 

min 𝑤𝑆 ⋅ 𝛼𝑆

𝑆∈𝒮

 

∀𝑥 ∈ 𝑋 ∶  𝛼𝑆

𝑆∈𝒮:𝑥∈𝑆

≥ 1 

  

∀𝑆 ∈ 𝒮 ∶ 𝛼𝑆 ∈ 0,1  𝜶𝑺 ≥ 𝟎          LP relaxation 
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LP Duality 

Strong LP Duality: Every linear program (LP) has a dual LP with 
the same optimal value of the objective function. 

LP: 
 

min 𝒄𝑇𝒙 
s. t.    𝐴 ⋅ 𝒙 ≥ 𝒃 
                𝒙 ≥ 𝟎 

 

Dual LP: 
 

max𝒃𝑇𝒚 
s. t.    𝐴𝑇 ⋅ 𝒚 ≤ 𝒄 
                  𝒚 ≥ 𝟎 
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Dual Set Cover LP 

(Fractional) Set Cover LP: 

min 𝑤𝑆 ⋅ 𝛼𝑆

𝑆∈𝒮

 

        ∀𝑥 ∈ 𝑋 ∶  𝛼𝑆

𝑆∈𝒮:𝑥∈𝑆

≥ 1 

  

        ∀𝑆 ∈ 𝒮 ∶ 𝛼𝑆 ≥ 0 
  

(Fractional) Set Cover Dual LP: 

max  𝛽𝑥

𝑥∈𝑋

 

        ∀𝑆 ∈ 𝒮 ∶  𝛽𝑥

𝑥∈𝑆

≤ 𝑤𝑆 

  

        ∀𝑥 ∈ 𝑋: 𝛽𝑥 ≥ 0 
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Set Cover: Special Cases 

Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes of a graph 𝐺 = (𝑉, 𝐸) such that 
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅. 

 

 

 

 
 

Minimum Vertex Cover: 

• Find a vertex cover of minimum cardinality 
 

Minimum Weighted Vertex Cover: 

• Each node has a weight 

• Find a vertex cover of minimum total weight 
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Set Cover: Special Cases 

Dominating Set: 
Given a graph 𝐺 = 𝑉, 𝐸 , a dominating set 𝑆 ⊆ 𝑉 is a subset of 
the nodes 𝑉 of 𝐺 such that for all nodes 𝑢 ∈ 𝑉 ∖ 𝑆, there is a 
neighbor 𝑣 ∈ 𝑆. 
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Minimum Hitting Set 

Given: Set of elements 𝑋 and collection of subsets 𝒮 ⊆ 2𝑋 
– Sets cover 𝑋:  𝑆𝑆∈𝒮 = 𝑋 

 

Goal: Find a min. cardinality subset 𝐻 ⊆ 𝑋 of elements such that 
 

∀𝑆 ∈ 𝒮 ∶ 𝑆 ∩ 𝐻 ≠ ∅ 
 

Problem is equivalent to min. set cover with roles of sets and 
elements interchanged 

Sets 

Elements 
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Knapsack 

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 > 0 and value 𝑣𝑖 > 0  

• Knapsack (bag) of capacity 𝑊 
 

• Goal: pack items into knapsack such that total weight is at most 
𝑊 and total value is maximized: 
 

max 𝑣𝑖

𝑖∈𝑆

 

s. t.   𝑆 ⊆ 1,… , 𝑛  and  𝑤𝑖 ≤ 𝑊

𝑖∈𝑆

 

 

• E.g.: jobs of length 𝑤𝑖  and value 𝑣𝑖, server available for 𝑊 time 
units, try to execute a set of jobs that maximizes the total value 
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Knapsack: Dynamic Programming Alg. 

We have shown: 

• If all item weights 𝑤𝑖  are integers, using dynamic programming, 
the knapsack problem can be solved in time 𝑂(𝑛𝑊) 

• If all values 𝑣𝑖 are integers, there is another dynamic progr. 
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value. 
 

Problems: 

• If 𝑊 and 𝑉 are large, the algorithms are not polynomial in 𝑛 

• If the values or weights are not integers, things are even worse 
(and in general, the algorithms cannot even be applied at all) 
 

Idea: 

• Can we adapt one of the algorithms to at least compute an 
approximate solution? 



Algorithm Theory, WS 2015/16 Fabian Kuhn 15 

Approximation Algorithm 

• The algorithm has a parameter 𝜀 > 0 

• We assume that each item alone fits into the knapsack 

• We define: 

𝑉 ≔ max
1≤𝑖≤𝑛

𝑣𝑖 , ∀𝑖: 𝑣𝑖 ≔
𝑣𝑖𝑛

𝜀𝑉
, 𝑉 ≔ max

1≤𝑖≤𝑛
𝑣𝑖  

• We solve the problem with integer values 𝑣𝑖  and weights 𝑤𝑖  
using dynamic programming in time 𝑂(𝑛2 ⋅ 𝑉 ) 

• If solution value < 𝑉, we take item with value 𝑉 instead 

 

Theorem: The described algorithm runs in time 𝑂 𝑛3 𝜀 . 
 

Proof: 

𝑉 = max
1≤𝑖≤𝑛

𝑣𝑖 = max
1≤𝑖≤𝑛

𝑣𝑖𝑛

𝜀𝑉
=

𝑉𝑛

𝜀𝑉
=

𝑛

𝜀
 


