

Chapter 9 Online Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Online Computations $T \rightarrow ALC \rightarrow O$

- FREBURG
- Sometimes, an algorithm has to start processing the input before the complete input is known
- For example, when storing data in a data structure, the sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole input before computing the output.

- Some problems are inherently online
 - Especially when real-time requests have to be processed over a significant period of time

Competitive Ratio

- Let's again consider optimization problems
 - For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

Best objective value that an offline algorithm can achieve for a given input sequence I

Online solution $\underline{ALG}(I)$:

• Objective value achieved by an online algorithm ALG on *I*

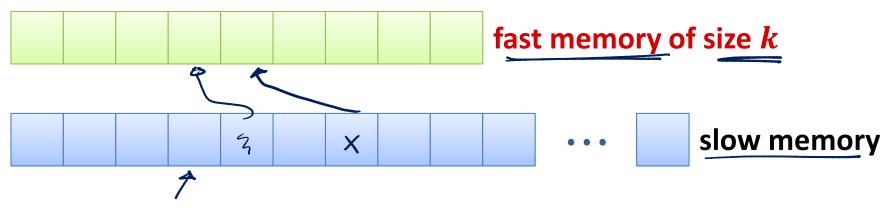
Competitive Ratio: An algorithm has competitive ratio $c \ge 1$ if

$$\operatorname{ALG}(I) \leq c \cdot \operatorname{OPT}(I) + \alpha.$$

• If $\alpha = 0$, we say that ALG is strictly *c*-competitive.

Paging Algorithm

Assume a simple memory hierarchy:



If a memory page has to be accessed:

- Page in fast memory (hit): take page from there
- Page not in fast memory (miss): leads to a page fault
- Page fault: the page is loaded into the fast memory and some page has to be evicted from the fast memory
- Paging algorithm: decides which page to evict
- Classical online problem: we don't know the future accesses

Least Recently Used (LRU):

• Replace the page that hasn't been used for the longest time

First In First Out (FIFO):

• Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

• Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

• Replace the page that has been used the least

Longest Forward Distance (LFD): Not an online strategy

- Replace the page whose next request is latest (in the future)
- LFD is **not** an online strategy!

LFD is Optimal

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

- For contradiction, assume that LFD is not optimal
- Then there exists a finite input sequence σ on which <u>LFD</u> is not optimal (assume that the length of σ is $|\sigma| = n$)
- Let OPT be an optimal solution for σ such that
 - OPT processes requests $1, \dots, i$ in exactly the same way as LFD
 - OPT processes request i + 1 differently than LFD
 - Any other optimal strategy processes one of the first i + 1 requests differently than LFD
- Hence, OPT is the optimal solution that behaves in the same way as LFD for as long as possible → we have <u>i < n</u>
- Goal: Construct OPT' that is identical with LFD for req. $1, \dots, i+1$

LFD is Optimalsame fast mem. contentTheorem: LFD (longest forward distance) is an optimal offline alg.Proof: $OPT + 1/2, \dots, i/i+i$ LFT : $1/2, \dots, i/i+i$ Case 1: Request i + 1 does not lead to a page fault

- LFD does not change the content of the fast memory
- OPT behaves differently than LFD
 → OPT replaces some page in the fast memory
 - As up to request i + 1, both algorithms behave in the same way, they also have the same fast memory content
 - OPT therefore does not require the new page for request i + 1
 - Hence, OPT can also load that page later (without extra cost) \rightarrow OPT'

fasd

X

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request i + 1 does lead to a **page fault**

- LFD and OPT move the same page into the fast memory, but they evict different pages
 - If OPT loads more than one page, all pages that are not required for request i + 1 can also be loaded later
- Say, LFD evicts page p and OPT evicts page p'
- By the definition of LFD, \underline{p}' is required again before page p

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request i + 1 does lead to a **page fault** j > j' i + 1 $\ell' < \ell$: OPT evicts p j': next req. for p' j: next req. for pLFD evicts p $j' = m_{eq}$ $\ell \le j'$: OPT loads p' (for first time after i + 1) OPT evicts p'

- a) OPT keeps p in fast memory until request ℓ
 - Evict p at request i+1, keep p' instead and load p (instead of p') back into the fast memory at request ℓ
- b) OPT evicts p at request $\ell' < \ell$
 - Evict p at request i + 1 and p' at request ℓ' (switch evictions of p and p')

Phase Partition

We partition a given request sequence σ into phases as follows:

- Phase 0: empty sequence
- Phase i : maximal sequence that immediately follows phase i 1 and contains at most k distinct page requests

Example sequence
$$(k = 4)$$
:
2, 5, 12, 5, 4, 2, 10, 8, 3, 6, 2, 2, 6, 6, 8, 3, 2, 6, 9, 10, 6, 3, 10, 2, 1, 3, 5
phase 1 phase 3
phase 1 phase 4
phase 1 phase 4
phase 1 phase 4
phase 2 phase 3
phase 3
phase 3
phase 4
phase 4
phase 4
phase 5

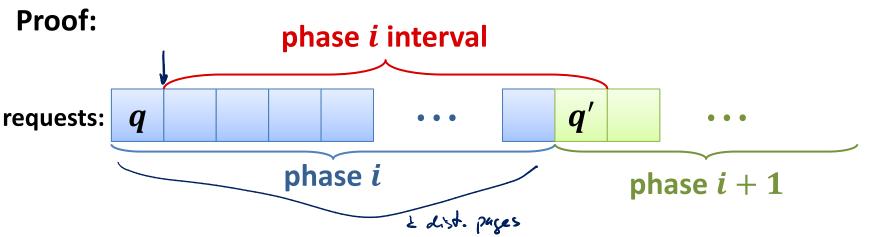
Phase *i* **Interval:** interval starting with the second request of phase *i* and ending with the first request of phase i + 1

• If the last phase is phase p, phase i interval is defined for i = 1, ..., p - 1

Optimal Algorithm

FREBURG

Lemma: Algorithm LFD has at least one page fault in each phase *i* interval (for i = 1, ..., p - 1, where *p* is the number of phases).



- *q* is in fast memory after first request of phase *i*
- Number of distinct requests in phase *i*: *k*
- By maximality of phase *i*: *q*′ does not occur in phase *i*
- Number of distinct requests $\neq q$ in phase interval i: k

\rightarrow at least one page fault

LRU and FIFO Algorithms

FRENCE

Lemma: Algorithm LFD has at least one page fault in each phase i interval (for i = 1, ..., p - 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline algorithm is at least p - 1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most \overline{k} .

Proof:

phase i

- We will show that both have at most k page faults per phase
- We then have (for every input *I*):

$$LRU(I), FIFO(I) \le k \cdot p \le k \cdot OPT(I) + k$$

LRU and FIFO Algorithms

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- Need to show that both have at most k page faults per phase
- didinet LRU: - The k last pages used are the k least recently used

 - Throughout a phase *i*, the *k* distinct pages of phase *i* are the \pounds .r.u.
 - Once in the fast memory, these pages are therefore not evicted until the end of the phase
- FIFO:
 - In each page fault in phase *i*, one of the *k* pages of phase *i* is loaded into fast memory und recent
 - Once a page is loaded in a page fault of phase i it belongs to the left k ipages loaded into fast memory throughout the rest of the phase
- Hence: Each of the k pages leads to ≤ 1 page fault in phase i Algorithm Theory, WS 2015/16 Fabian Kuhn

Theorem: Even if the slow memory contains only k + 1 pages, any deterministic algorithm has competitive ratio at least k.

KGCI

Proof:

Lower Bound

- Consider some given deterministic algorithm ALG
- Because ALG is deterministic, the content of the fast memory after the first *i* requests is determined by the first *i* requests.
- Construct a request sequence inductively as follows:
 - Assume some initial slow memory content
 - The $(i + 1)^{st}$ request is for the page which is not in fast memory after the first *i* requests (throughout we only use k + 1 different pages)
- There is a page fault for every request
- OPT has a page fault at most every k requests

- There is always a page that is not required for the next k-1 requests

Randomized Algorithms

- We have seen that deterministic paging algorithms cannot be better than *k*-competitive
- Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has competitive ratio $c \ge 1$ if for all inputs I, adapted admets random var. $\mathbb{E}[ALG(I)] \le c \cdot OPT(I) + \alpha.$

• If $\alpha \leq 0$, we say that ALG is strictly *c*-competitive.

Adversaries

• For randomized algorithm, we need to distinguish between different kinds of adversaries (providing the input)

Oblivious Adversary:

- Has to determine the complete input sequence before the algorithm starts
 - The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

- The input sequence is constructed during the execution
- When determining the next input, the <u>adversary knows</u> how the algorithm reacted to the previous inputs
- Input sequence depends on the random behavior of the alg.
- Sometimes, two adaptive adversaries are distinguished
 - offline, online : different way of measuring the adversary cost

Lower Bound

The adversaries can be ordered according to their strength oblivious < online adaptive < offline adaptive

- An algorithm that achieves a given comp. ratio with an adaptive adversary is at least as good with an oblivious one
- A lower bound that holds against an oblivious adversary also holds for the two adaptive adversaries

Theorem: No randomized paging algorithm can be better than *k*-competitive against an adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

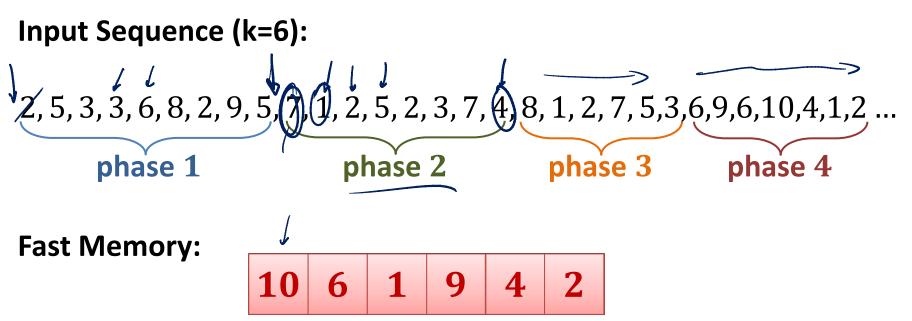
• Are there better algorithms with an oblivious adversary?

The Randomized Marking Algorithm

FREIBURG

- Every entry in fast memory has a marked flag
- Initially, all entries are unmarked.
- If a page in fast memory is accessed, it gets marked
- When a page fault occurs:
 - If all k pages in fast memory are marked, all marked bits are set to 0
 - The page to be evicted is chosen uniformly at random among the <u>unmarked pages</u>
 - The marked bit of the new page in fast memory is set to 1

Example



Observations:

- At the end of a phase, the fast memory entries are exactly the k pages of that phase
- At the beginning of a phase, all entries get unmarked
- #page faults depends on #new pages in a phase

FREIBURG

Consider a fixed phase *i***:**

- Assume that of the <u>k pages</u> of phase i, m_i are new and $k m_i$ are old (i.e., they already appear in phase i 1)
- All \underline{m}_i new pages lead to page faults (when they are requested for the first time)
- When requested for the first time, an old page leads to a page fault, if the page was evicted in one of the previous page faults

• We need to count the number of page faults for old pages

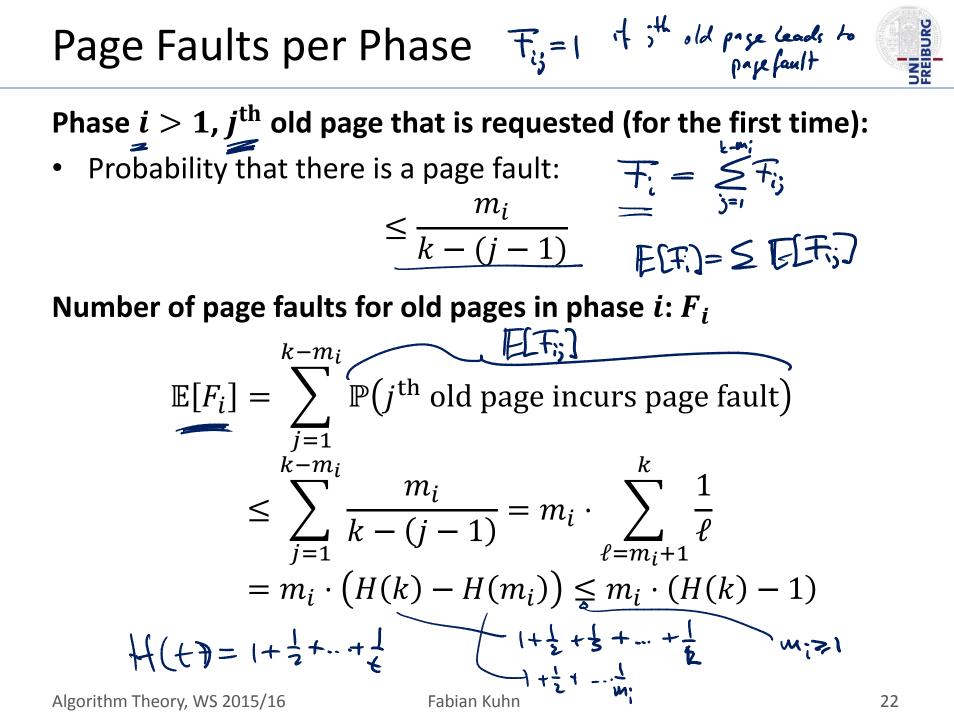
21

Phase i, j^{th} old page that is requested (for the first time):

- There is a page fault if the page has been evicted
- There have been at most $\underline{m_i + j 1}$ distinct requests before
- The old places of the j 1 first old pages are occupied
- The other ≤ m_i pages are at uniformly random places among the remaining k (j 1) places (oblivious adv.)
- Probability that the old place of the j^{th} old page is taken:

$$\leq \frac{m_i}{k - (j - 1)}$$

Algorithm Theory, WS 2015/16



Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2\ln(k) + 2$.

Proof:

- Assume that there are *p* phases
- #page faults of rand. marking algorithm in phase $i: F_i + m_i$
- We have seen that $\mathbb{E}[F_i] \le m_i \cdot (H(k) 1) \le m_i \cdot \ln(k)$
- Let *F* be the total number of page faults of the algorithm:

$$\mathbb{E}[F] \leq \sum_{i=1}^{p} (\mathbb{E}[F_i] + m_i) \leq H(k) \cdot \sum_{i=1}^{p} m_i$$

$$\leq m_i \text{ (IE})$$

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2\ln(k) + 2$.

Proof:

- Let F_i^* be the number of page faults in phase *i* in an opt. exec.
- Phase 1: m_1 pages have to be replaces $\rightarrow F_1^* \ge m_1$
- Phase i > 1:
 - Number of distinct page requests in phases i 1 and $i: k + m_i$
 - Therefore, $F_{i-1}^* + F_i^* \ge m_i$
- Total number of page requests F^* :

$$F_{i}^{*} = \sum_{i=1}^{p} F_{i}^{*} \ge \frac{1}{2} \cdot \left(F_{1}^{*} + \sum_{i=2}^{p} (F_{i-1}^{*} + F_{i}^{*})\right) \ge \frac{1}{2} \cdot \sum_{i=1}^{p} m_{i}$$
Algorithm Theory, WS 2015/16
$$Fabian Kuhn \neq Emilip = 24$$

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking algorithm has a competitive ratio of at most $2H(k) \le 2\ln(k) + 2$.

Proof:

Randomized marking algorithm:

 $\mathbb{E}[F] \le H(k) \cdot \sum_{i=1}^{p} m_{i}$ Optimal algorithm: $F^{*} \ge \frac{1}{2} \cdot \sum_{i=1}^{p} m_{i}$ $\mathbb{E}[F] \le H(k) \cdot \sum_{i=1}^{p} m_{i}$

Remark: It can be shown that no randomized algorithm has a competitive ratio better than H(k) (against an obl. adversary)

Algorithm Theory, WS 2015/16

Fabian Kuhn