
Chapter 9 

Online Algorithms 
 

Algorithm Theory 
WS 2015/16 

 
Fabian Kuhn 



Algorithm Theory, WS 2015/16 Fabian Kuhn 2 

Competitive Ratio 

• Let’s again consider optimization problems 
– For simplicity, assume, we have a minimization problem 

 

Optimal offline solution 𝐎𝐏𝐓(𝑰): 

• Best objective value that an offline algorithm can achieve for a 
given input sequence 𝐼 
 

Online solution 𝐀𝐋𝐆(𝑰): 

• Objective value achieved by an online algorithm ALG on 𝐼 
 

Competitive Ratio: An algorithm has competitive ratio 𝑐 ≥ 1 if 
 

𝐀𝐋𝐆 𝑰 ≤ 𝒄 ⋅ 𝐎𝐏𝐓 𝑰 + 𝜶. 
 

• If 𝛼 = 0, we say that ALG is strictly 𝑐-competitive. 



Algorithm Theory, WS 2015/16 Fabian Kuhn 3 

Self-Adjusting Lists 

• Linked lists are often inefficient 
– Cost of accessing an item at position 𝑖 is linear in 𝑖 

• But, linked lists are extremely simple 
– And therefore nevertheless interesting 

 

• Can we at least improve the behavior of linked lists?  
 

• In practical applications, not all items are accessed equally often 
and not equally distributed over time 
– The same items might be used several times over a short period of time 

 

• Idea: rearrange list after accesses to optimize the structure for 
future accesses 

• Problem: We don’t know the future accesses 
– The list rearrangement problems is an online problem! 



Algorithm Theory, WS 2015/16 Fabian Kuhn 4 

Model 

• Only find operations (i.e., access some item) 
– Let’s ignore insert and delete operations 

– Results can be generalized to cover insertions and deletions 

 

Cost Model: 

• Accessing item at position 𝑖 costs 𝑖 

• The only operation allowed for rearranging the list is swapping 
two adjacent list items 

• Swapping any two adjacent items costs 1 



Algorithm Theory, WS 2015/16 Fabian Kuhn 5 

Rearranging The List 

Frequency Count (FC): 

• For each item keep a count of how many times it was accessed 

• Keep items in non-increasing order of these counts 

• After accessing an item, increase its count and move it forward 
past items with smaller count 

 

Move-To-Front (MTF): 

• Whenever an item is accessed, move it all the way to the front 

 

Transpose (TR): 

• After accessing an item, swap it with its predecessor 



Algorithm Theory, WS 2015/16 Fabian Kuhn 6 

Cost 

Cost when accessing item at position 𝒊: 

• Frequency Count (FC): between 𝑖 and 2𝑖 − 1 

• Move-To-Front (MTF): 2𝑖 − 1 

• Transpose (TR): 𝑖 + 1 

 

Random Accesses: 

• If each item 𝑥 has an access probability 𝑝𝑥 and the items are 
accessed independently at random using these probabilities, FC 
and TR are asymptotically optimal 

 

Real access patterns are not random, TR usually behaves badly and 
the much simpler MTF often beats FC 



Algorithm Theory, WS 2015/16 Fabian Kuhn 7 

Move-To-Front 

• We will see that MTF is competitive 
 

• To analyze MTF we need competitive analysis and amortized 
analysis 
 

Operation 𝒌: 

• Assume, the operation accesses item 𝑥 at position 𝑖 
 

• 𝒄𝒌: actual cost of the MTF algorithm 
𝒄𝒌 = 𝟐𝒊 − 𝟏 

 

• 𝒂𝒌: amortized cost of the MTF algorithm 
 

• 𝒄𝒌
∗ : actual cost of an optimal offline strategy 
– Let’s call the optimal offline strategy OPT 



Algorithm Theory, WS 2015/16 Fabian Kuhn 8 

Potential Function 

• For the analysis, we think of running the MTF and OPT at the 
same time 

• The state of the system is determined by the two lists of MTF 
and OPT 

• Similarly to amortized analysis for data structures, we use a 
potential function which maps the system state to a real number 

• If the MTF list and the list of OPT are similar, the actual cost of 
both algorithms for most requests is roughly the same 

• If the lists are very different, the costs can be very different and 
the potential function should have a large value to be able to 
compensate for the potentially high cost difference 

• We therefore use a potential function which measures the 
difference between the MTF list and the optimal offline list 



Algorithm Theory, WS 2015/16 Fabian Kuhn 9 

Potential Function 

Potential Function 𝚽𝒌: 

• Inversion: pair of items 𝑥 and 𝑦 such that 𝑥 precedes 𝑦 in one 
list and 𝑦 precedes 𝑥 in the other list 

• Twice the number of inversions between the lists of MTF and 
OPT after the first 𝑘 operations 

• Measure for the difference between the lists after 𝑘 operations 
 

 

Initially, the two lists are identical: 𝚽𝟎 = 𝟎 
 

For all 𝑘, it holds that 𝟎 ≤ 𝚽𝒌 ≤ 𝟐 ⋅
𝒏
𝟐

= 𝒏(𝒏 − 𝟏) 
 



Algorithm Theory, WS 2015/16 Fabian Kuhn 10 

Potential Function 

Potential Function 𝚽𝒌: 

• Inversion: pair of items 𝑥 and 𝑦 such that 𝑥 precedes 𝑦 in one 
list and 𝑦 precedes 𝑥 in the other list 

• Twice the number of inversions between the lists of MTF and 
OPT after the first 𝑘 operations 

• Measure for the difference between the lists after 𝑘 operations 
 

 

To show that MTF is 𝛼-competitive, we will show that 
 

∀𝒌:  𝒂𝒌 = 𝒄𝒌 + 𝚽𝒌 − 𝚽𝒌−𝟏 ≤ 𝜶 ⋅ 𝒄𝒌
∗  



Algorithm Theory, WS 2015/16 Fabian Kuhn 11 

Competitive Analysis 

Theorem: MTF is 𝟒-competitive. 

Proof: 

• Need that 𝑎𝑘 = 𝑐𝑘 + Φ𝑘 − Φ𝑘−1 ≤ 4𝑐𝑘
∗  

 

• Position of 𝑥 in list of OPT: 𝑖∗ 

• Number of swaps of OPT: 𝑠∗ 
 

• In MTF list, position of 𝑥 is changed w.r.t. to the 𝑖 − 1 
preceding items (nothing else is changed) 

• For each of these items, either an inversion is created or one 
is destroyed (before the 𝑠∗ swaps of OPT) 

• Number of new inversions (before OPT’s swaps) ≤ 𝑖∗ − 1: 
– Before op. 𝑘, only 𝑖∗ − 1 items are before 𝑥 in OPT’s list 

– With all other items, 𝑥 is ordered the same as in OPT’s list after 
moving it to the front 



Algorithm Theory, WS 2015/16 Fabian Kuhn 12 

Competitive Analysis 

Theorem: MTF is 𝟒-competitive. 

Proof: 

• Need that 𝑎𝑘 = 𝑐𝑘 + Φ𝑘 − Φ𝑘−1 ≤ 4𝑐𝑘
∗  

 

• 𝑐𝑘 = 2𝑖 − 1,    𝑐𝑘
∗ = 𝑖∗ + 𝑠∗ 

 

• Number of inversions created: ≤ 𝑖∗ − 1 + 𝑠∗ 

• Number of inversions destroyed: ≥ 𝑖 − 𝑖∗ 



Algorithm Theory, WS 2015/16 Fabian Kuhn 13 

Competitive Analysis 

Theorem: MTF is 𝟒-competitive. 

Proof: 

• Need that 𝑎𝑘 = 𝑐𝑘 + Φ𝑘 − Φ𝑘−1 ≤ 4𝑐𝑘
∗  

 

• 𝑐𝑘 = 2𝑖 − 1,    𝑐𝑘
∗ = 𝑖∗ + 𝑠∗ 

 

• Number of inversions created: ≤ 𝑖∗ − 1 + 𝑠∗ 

• Number of inversions destroyed: ≥ 𝑖 − 𝑖∗ 


