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* Let’s again consider optimization problems

— For simplicity, assume, we have a minimization problem

Optimal offline solution OPT (I):

* Best objective value that an offline algorithm can achieve for a
given input sequence [

Online solution ALG(I):
e Objective value achieved by an online algorithm ALG on

Competitive Ratio: An algorithm has competitive ratioc = 1 if
ALG(I) < c-OPT() + «a.
5y —

 Ifa = 0, we say that ALG is strictly c-competitive.
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 Linked lists are often inefficient

— Cost of accessing an item at position i is linear in i

* But, linked lists are extremely simple

— And therefore nevertheless interesting

* Can we at least improve the behavior of linked lists?

* In practical applications, not all items are accessed equally often
and not equally distributed over time

— The same items might be used several times over a short period of time

* Idea: rearrange list after accesses to optimize the structure for
future accesses

 Problem: We don’t know the future accesses

— The list rearrangement problems is an online problem!

—_—
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* Only find operations (i.e., access some item)
— Let’signore insert and delete operations

— Results can be generalized to cover insertions and deletions
J X Predexy

] —1
r 4

Cost Model: v
* Accessing item at position i costs i

 The only operation allowed for rearranging the list is swapping
two adjacent list items

 Swapping any two adjacent items costs 1
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Frequency Count (FC):

* For each item keep a count of how many times it was accessed
* Keep items in non-increasing order of these counts

* After accessing an item, increase its count and move it forward
past items with smaller count

P
Move-To-Front (MTF): X
* Whenever an item is accessed, move it all the way to the front

Pl
I )

Transpose (TR): r
e After accessing an item, swap it with its predecessor
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Cost when accessing item at position i:
— * Frequency Count (FC): betweeniand 2i — 1
 Move-To-Front (MTF): 2i — 1

— ¢ Transpose (TR):i + 1 @

Random Accesses:

* |f each item x has an access probability p,, and the items are
accessed independently at random using these probabilities, FC
and TR are asymptotically optimal

Real access patterns are not random, T;Rusually behaves badly and
the much simpler MTF often beats FC
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 We will see that MTF is competitive

* To analyze MTF we need competitive analysis and amortized
analysis
X
%-‘*&\ X) ; NT+

e ———
* Assume, the operation accesses item x at position i

Operation k:

* Ck: actual cost of the MTF algorithm o "“’iz -
Ck=2l—1 ’\MC‘_‘;\_! ?C“_‘_
* Qi amortized cost of the MTF algorithm 2« et = “{"Z%
* ), actual cost of an optimal offline strategy = +— =0t
= Let’s call the optimal offline strategy OJPT ?C'; L cost of OPT
>

- 4
2 : 2 é % .
Ctsqu Cy i oX * <L &S Qk < X-C,
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* For the analysis, we think of running the MTF and OPT
same time

at the

——
—

* The state of the system is determined by the two lists of MTF
and OPT

* Similarly to amortized analysis for data structures, we use a
potential function which maps the system state to a real number

* |fthe MTF list and the list of OPT are similar, the actual cost of
both algorithms for most requests is roughly the same

* If the lists are very different, the costs can be very different and
the potential function should have a large value to be able to
compensate for the potentially high cost difference

 We therefore use a potential function which measures the
difference between the MTF list and the optimal offline list
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Potential Function d>k°

* Inversion: pair of items x and y such that x precedes y in one
list and y precedes x in the other list

e Twice the number of inversions between the lists of MTF and
OPT after the first k operations

 Measure for the difference between the lists after k operations

Initially, the two lists are identical: ®5 = 0

n

Forall k, it holds that 0 < @, < 2 - (,,

)=nn—1
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Potential Function ®:

* Inversion: pair of items x and y such that x precedes y in one
list and y precedes x in the other list

e Twice the number of inversions between the lists of MTF and
OPT after the first k operations

e Measure for the difference between the lists after k goperations
\ q 5 O(.C: ‘L
To show that MTF is a-competitive, we will show tha

Vk: ak—ck+<I>k (I)k 1<a Ck

==
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Competitive Analysis . .2:-

Theorem: MTF is 4-competitive. y . »/
¢ t ; MT+
Proof: ~_ <
 Needthata, = c; + P — Py < 4cy,
B @K* g orv
e Position of x in list of OPT: i* % ‘ VQ
* ARV MW,
* Number of swaps of OPT: s’ crealed rewhoved]

In MTF list, position of x is changed w.rt. tothei — 1
preceding items (nothing else is changed)

For each of these items, either an inversion is created or one
is destroyed (before the s* swaps of OPT)

Number of new inversions (before OPT’s swaps) < i* — 1:
———

— Before op. k, only i* — 1 items are before x in OPT’s list

— With all other items, x is ordered the same as in OPT’s list after
moving it to the front —= wweove = 1-1% luvoeoleus
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Theorem: MTF is 4-competitive.

Proof:
* Needthata, =c, + &) — y_4 < 4cy,
* g = 20 — 1; C; =i*+ s Creq\.g UQ Y TUVLS TS

< % -\

-

Number of inversions created: < i" — 1 4+ 5™ a fuwsralos )

Number of inversions destroyed: > i — i*z (="

fefe

OPT Loes o6

Swa S
e

Creqle < oA,

\

'\,

Algorithm Theory, WS 2015/16 Fabian Kuhn 12



Competitive Analysis

UNI

FREIBURG

Theorem: MTF is 4-competitive.
Proof:

 Needthata, = c; + P — Py < 4cy,
—

e ¢, =2i—1, ¢, =i"+5s"

=

* Number of inversions created: <i*— 1+ s
 Number of inversions destroyed: > i — i"

e Lot 2Lt
_ 9y AT -2424 -
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