Sequential Algorithms

Classical Algorithm Design:
- One machine/CPU/process/... doing a computation

RAM (Random Access Machine):
- Basic standard model
- Unit cost basic operations
- Unit cost access to all memory cells

Sequential Algorithm / Program:
- Sequence of operations
 (executed one after the other)
Parallel and Distributed Algorithms

Today’s computers/systems are not sequential:
• Even cell phones have several cores
• Future systems will be highly parallel on many levels
• This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:
• Exploit parallelism to speed up computations
• Shared resources such as memory, bandwidth, ...
• Increase reliability by adding redundancy
• Solve tasks in inherently decentralized environments
• ...

Parallel and Distributed Systems

• Many different forms

• Processors/computers/machines/… communicate and share data through
 – Shared memory or message passing

• Computation and communication can be
 – Synchronous or asynchronous

• Many possible topologies for message passing

• Depending on system, various types of faults
Challenges

Algorithmic and theoretical challenges:

• How to parallelize computations
• Scheduling (which machine does what)
• Load balancing
• Fault tolerance
• Coordination / consistency
• Decentralized state
• Asynchrony
• Bounded bandwidth / properties of comm. channels
• ...

Algorithm Theory, WS 2015/16 Fabian Kuhn
Models

• A large variety of models, e.g.:

• **PRAM** (Parallel Random Access Machine)
 – Classical model for parallel computations

• **Shared Memory**
 – Classical model to study coordination / agreement problems, distributed data structures, ...

• **Message Passing** (fully connected topology)
 – Closely related to shared memory models

• **Message Passing in Networks**
 – Decentralized computations, large parallel machines, comes in various flavors...
PRAM

- Parallel version of RAM model
- \(p \) processors, shared random access memory

- Basic operations / access to shared memory cost 1
- Processor operations are synchronized
- Focus on parallelizing computation rather than cost of communication, locality, faults, asynchrony, ...
Other Parallel Models

• **Message passing:** Fully connected network, local memory and information exchange using messages

• **Dynamic Multithreaded Algorithms:** Simple parallel programming paradigm
 – E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

```plaintext
FIB(n)
1 if n < 2
2 then return n
3 x ← spawn FIB(n - 1)
4 y ← spawn FIB(n - 2)
5 sync
6 return (x + y)
```
Parallel Computations

Sequential Computation:
• Sequence of operations

Parallel Computation:
• Directed Acyclic Graph (DAG)
Parallel Computations

\(T_p \): time to perform comp. with \(p \) procs

- \(T_1 \): work (total # operations)
 - Time when doing the computation sequentially

- \(T_\infty \): critical path / span
 - Time when parallelizing as much as possible

- Lower Bounds:
 \[
 T_p \geq \frac{T_1}{p}, \quad T_p \geq T_\infty
 \]
Parallel Computations

\(T_p \): time to perform comp. with \(p \) procs

- **Lower Bounds:**
 \[T_p \geq \frac{T_1}{p}, \quad T_p \geq T_\infty \]

- **Parallelism:** \(\frac{T_1}{T_\infty} \)
 - maximum possible speed-up

- **Linear Speed-up:**
 \[\frac{T_p}{T_1} = \Theta(p) \]
Scheduling

• How to assign operations to processors?

• Generally an online problem
 – When scheduling some jobs/operations, we do not know how the computation evolves over time

Greedy (offline) scheduling:

• Order jobs/operations as they would be scheduled optimally with ∞ processors (topological sort of DAG)
 – Easy to determine: With ∞ processors, one always schedules all jobs/ops that can be scheduled

• Always schedule as many jobs/ops as possible
• Schedule jobs/ops in the same order as with ∞ processors
 – i.e., jobs that become available earlier have priority
Brent’s Theorem: On \(p \) processors, a parallel computation can be performed in time

\[
T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.
\]

Proof:
• Greedy scheduling achieves this...
• \#operations scheduled with \(\infty \) processors in round \(i \): \(x_i \)
Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

Proof:

- Greedy scheduling achieves this...
- #operations scheduled with ∞ processors in round i: x_i
Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p = O(T_1 / T_\infty)$, it is possible to achieve a linear speed-up.
Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)
The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to be specified
 - Weak CRCW: concurrent write only OK if all processors write 0
 - Common-mode CRCW: all processors need to write the same value
 - Arbitrary-winner CRCW: adversary picks one of the values
 - Priority CRCW: value of processor with highest ID is written
 - Strong CRCW: largest (or smallest) value is written

- The given models are ordered in strength:

 \[
 \text{weak} \leq \text{common-mode} \leq \text{arbitrary-winner} \leq \text{priority} \leq \text{strong}
 \]
Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

- Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine.
Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

- Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine.
Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

- Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine.

Theorem: A parallel computation that can be performed in time t, using p probabilistic processors on a strong CRCW machine, can also be performed in expected time $O(t \log p)$ using $O(p / \log p)$ processors on an arbitrary-winner CRCW machine.

- The same simulation turns out more efficient in this case.
Some Relations Between PRAM Models

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time $O(t)$ using $O(p^2)$ processors on a weak CRCW machine.

Proof:
- **Strong:** largest value wins, **weak:** only concurrently writing 0 is OK.
Some Relations Between PRAM Models

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time $O(t)$ using $O(p^2)$ processors on a weak CRCW machine.

Proof:
- **Strong:** largest value wins, **weak:** only concurrently writing 0 is OK.
Computing the Maximum

Given: n values

Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a binary tree.
Computing the Maximum

Observation: On a strong CRCW machine, the maximum of a \(n \) values can be computed in \(O(1) \) time using \(n \) processors

- Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of \(n \) integers between 1 and \(\sqrt{n} \) can be computed in time \(O(1) \) using \(O(n) \) proc.

Proof:

- We have \(\sqrt{n} \) memory cells \(f_1, \ldots, f_{\sqrt{n}} \) for the possible values
- Initialize all \(f_i := 1 \)
- For the \(n \) values \(x_1, \ldots, x_n \), processor \(j \) sets \(f_{x_j} := 0 \)
 - Since only zeroes are written, concurrent writes are OK
- Now, \(f_i = 0 \) iff value \(i \) occurs at least once
- Strong CRCW machine: max. value in time \(O(1) \) w. \(O(\sqrt{n}) \) proc.
- Weak CRCW machine: time \(O(1) \) using \(O(n) \) proc. (prev. lemma)