Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI

FREIBURG

Sequential Algorithms

UNI
|

FREIBURG

Classical Algorithm Design:
* One machine/CPU/process/... doing a computation

RAM (Random Access Machine):

* Basic standard model

* Unit cost basic operations

* Unit cost access to all memory cells

Sequential Algorithm / Program:

* Sequence of operations
(executed one after the other)

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Parallel and Distributed Algorithms

UNI

FREIBURG

Today’s computers/systems are not sequential:

* Even cell phones have several cores

e Future systems will be highly parallel on many levels
* This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

L * Exploit parallelism to speed up computations j

* Shared resources such as memory, bandwidth, ...

* Increase reliability by adding redundancy

* Solve tasks in inherently decentralized environments

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

UNI

Parallel and Distributed Systems

FREIBURG

* Many different forms

* Processors/computers/machines/... communicate and share
data through

— Shared memory or message passing

 Computation and communication can be

— Synchronous or asynchronous

* Many possible topologies for message passing

* Depending on system, various types of faults

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Challenges

UNI
|

FREIBURG

Algorithmic and theoretical challenges:
* How to parallelize computations

e Scheduling (which machine does what)

* Load balancing

* Fault tolerance

* Coordination / consistency

* Decentralized state

* Asynchrony

* Bounded bandwidth / properties of comm. channels

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Models

UNI
|

FREIBURG

* Alarge variety of models, e.g.:

* PRAM (Parallel Random Access Machine)

— Classical model for parallel computations

* Shared Memory

— Classical model to study coordination / agreement problems,
distributed data structures, ...

* Message Passing (fully connected topology)

— Closely related to shared memory models

* Message Passing in Networks

— Decentralized computations, large parallel machines, comes in various
flavors...

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

PRAM

UNI

FREIBURG

 Parallel version of RAM model
* p processors, shared random access memory
P —

* Basic operations / access to shared memory cost 1

* Processor operations are synchronized = twe Qivided j—:
foun

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

—_— =

Algorithm Theory, WS 2015/16 Fabian Kuhn

Other Parallel Models

UNI
|

FREIBURG

* Message passing: Fully connected network, local memory and
information exchange using messages

* Dynamic Multithreaded Algorithms: Simple parallel
programming paradigm

— E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

FIB(n))\ \
. -
2 then return n

r < spawn FIB(n — 1) \\' | \‘ ‘

3

4 y « spawn FIB(n — 2) AN
5 sync

6 return (r -+ y)

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Parallel Computations

UNI

FREIBURG

Sequential Computation: Parallel Computation:
e Sequence of operations * Directed Acyclic Graph (DAG)

(-

Algorithm Theory, WS 2015/16 Fabian Kuhn

FREIBURG

Parallel Computations :

UNI

T, : time to perform comp. with p procs (

 T,:work (total # operations)C
-
Z

&

— Time when doing the
computation sequentially

e T, critical path / span T
_oo- (1204 DAY

— Time when parallelizing as ®
much as possible

= @
 Lower Bounds: ‘. “ﬂ‘ Y
T —
T, 2(—% T,>T, </ -\
o = O

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Parallel Computations

UNI
|

FREIBURG

T ,: time to perform comp. with p procs

 Lower Bounds:

o ol 011-0<

. 1
e Parallelism: —
o0 «—

=
— maximum possible speed-up

* Linear Speed-up: 3

T,

= = 0(p)
TP —

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

)

Scheduling O e

(‘ o?g.

UNI

FREIBURG

 How to assign operations to processors?

* Generally an online problem

— When scheduling some jobs/operations, we do not know how the
computation evolves over time

Greedy (offline) scheduling:

* Order jobs/operations as they would be scheduled optimally
with oo processors (topological sort of DAG)

— Easy to determine: With oo processors, one always schedules all
jobs/ops that can be scheduled

* Always schedule as many jobs/ops as possible
* Schedule jobs/ops in the same order as with co processors

— i.e., jobs that become available earlier have priority

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

Brent’s Theorem

UNI
|

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

T, —-T,
—4+T,. =<

T,
T, < =
_bp p T

+ oo

Proof:
* Greedy scheduling achieves this...
* #Hoperations scheduled with o processors in round i: x;

® ° ° o) ‘)(® X,
z\ 51, o%jx a’ X
o

'
/

‘*“\sk — o® !
C & -~ A PN -~ ~ ¢
i

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

UNI
FREIBURG

Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:
* Greedy scheduling achieves this...
e f#operations scheduled with oo processors in round l: X;

f grocs. €; s B Yo sdadile x; ops. =T
’é, r"? ‘,\; %:ﬁ_g—-l‘l-\ =
T “lo > > Tl—Tob —_ T —
~ 4 = — I € =+ 1,
s Se<Zy-Bp B e
7 =1 (= ¢ —— ————— ——
/? /f

14

Algorithm Theory, WS 2015/16 Fabian Kuhn

Brent’s Theorem

UNI
FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

T{—-T,
T, < + T,
p
TNT——
f
Corollary: Greedy is a 2-approximation algorithm for scheduling.
f@um Lounds
P
—_F —[“ —
lV?’? Tc’s ﬂ+T°°sZT:
__“& — P f (O
\ 7 \00 \‘* {T*
¢ S—‘} 7

Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up. =

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

PRAM EREW TRAM

UNI
|

FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps

e The PRAM model comes in variants... /
TJ()) 1)1 () L\

EREW (exclusive read, exclusive write):
P sau cell .
* Concurrent memory access'by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior alco concument wete £ r@l vt allowed

* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

PRAM

UNI
FREIBURG

The PRAM model comes in variants... ERzw

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0 <«—
— Common-mode CRCW: all processors need to write the same value«—
— Arbitrary-winner CRCW: adversary picks one of the values =—
— Priority CRCW: value of processor with highest ID is written_<—
— Strong CRCW: largest (or smallest) value is written -

—_— e (Irp, x)

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Some Relations Between PRAM Models

UNI

Theorem: A parallel computation that can be performed in time ¢,

_ =

using p proc. on a strong CRCW machine, can also be performed in

time O(t logp) using p processors on an EREW machine.

e Each (parallel) step on thé’CRCW machine can be simulated by
O(logp) steps on an EREW / machine

Coucurrent 1o fes co.@(4 <:9oea€mul-€ wml-e access Yo cell |
Cn.,(k (uxiliony wem- CQ&% (,tw}‘-*‘/ﬂe(b O)
S 8a - r() ome. 2 wrles 3
0 e QDQD @Dh | L
5 @ >
\ 7 Q‘B $ S
%
\ D / + u 1O

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

FREIBURG

Some Relations Between PRAM Models :

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(t logp) using p processors on an EREW machine.

—_

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Coucu neue reao(g

——

G
\ —7 x)» T kv \1_7\ V4
7 \r{ Eiv V{v /\L Ofkeg) Qi;;w

\ j/
v el ol
(Jﬂc (

v

Algorithm Theory, WS 2015/16 Fabian Kuhn — 19

Some Relations Between PRAM Models :

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Theorem: A parallel computation that can be performed in time t,
using p probabilistic processors on a strong CRCW machine, can also
be performed in expected time O(tlogp) using O(p/logp)
processors on an arbitrary-winner CRCW machine.

* The same simulation turns out more efficient in this case

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

Some Relations Between PRAM Models :

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O (p?) processors on a weak CRCW machine

Proof:

* Strong: largest value wins, weak: only concurrently writing Q_is OK
S\m\qk \ $\2? k{_ a .ShBM? c2cn) ?QA-M su a weak CRCW PPA—H

DRSS ! Slrew.b ccy L), -, P
adfibeudd peocs q=3 &: Quary parr (), 3,362(,.-.}?§
adfidsone wmew. alls: \ s
X(‘" “((}ez(/ /{’3 K\ Vi, &, (\\[*aﬁv}ej X 07

(’\7“"- tell ., o8 wauls&own(&y o wa. all & Co,cw)

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

Some Relations Between PRAM Models :

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O (p?) processors on a weak CRCW machine

e

Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
T{°C U womis I wnle X dv Q(‘C ! 4:‘.: (/ V;.=x, Gyi=¢C

\d",-b: a‘:\) NQ&Q g"/ 23/ \’:/ VJ) a:/ 6(5 (a%“% ?‘.))

m— S

\-Q £;=¥3=-\ aund Q; =Q; 4Cuw.
\((_ \{j?/ Vv, Yoan £;:: (SMQ. concunen) wonles
> ‘= Procs
e % 1= > 3\{ -
P o \2 W [I2]
ﬁmc t wr-nlCS V. Cib cz(ﬂ A & g.; o
e:* ﬁ\z' 2‘ =0
Q?.; '£3 ‘=0

Algorithm Theory, WS 2015/16 Fabian Kuhn %ﬂ (’Z 1=0 22

Computing the Maximum

UNI

FREIBURG

Given: n values

Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a

binary tree.
PR R RRBR®EE ot
\ / AN AN 2
[s7 3 \Ef \é A
N N FT':O(V\)
B 0o
\ / \ob:é(ﬁdb\)

¥ B

. "
o = O(} + Loyu)

Algorithm Theory, WS 2015/16 Fabian Kuhn

23

UNI

Computing the Maximum

FREIBURG

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O(1) time using n processors

* Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers
between 1 and +/n can be computed in time 0(1) using O(n) proc.

Proof:

* We have y/n memory cells f3, ... , | yz for the possible values
* Initialize all f; =1

* Forthe n values x4, ..., x,,, processor j sets ij =0

— Since only zeroes are written, concurrent writes are OK

* Now, f; = 0 iff value i occurs at least once
 Strong CRCW machine: max. value in time 0(1) w. 0(1/n) proc.
* Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma)

Algorithm Theory, WS 2015/16 Fabian Kuhn 24

