Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI

FREIBURG



PRAM

UNI
|

FREIBURG

 Parallel version of RAM model
* p processors, shared random access memory

* Basic operations / access to shared memory cost 1
* Processor operations are synchronized

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2015/16 Fabian Kuhn 2



Parallel Computations

UNI

FREIBURG

T ,: time to perform comp. with p procs

 Lower Bounds:

. Ty
 Parallelism: —
o0

— maximum possible speed-up

* Linear Speed-up:
T

7. = 0@

Algorithm Theory, WS 2015/16 Fabian Kuhn




Brent’s Theorem

UNI
|

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2015/16 Fabian Kuhn 4



PRAM

UNI
|

FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps

e The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior

* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2015/16 Fabian Kuhn 5



PRAM

UNI
FREIBURG

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written
— Strong CRCW: largest (or smallest) value is written

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2015/16 Fabian Kuhn 6



Some Relations Between PRAM Models :

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O(p?) processors on a weak CRCW machine

Algorithm Theory, WS 2015/16 Fabian Kuhn 7



Computing the Maximum

UNI

FREIBURG

Given: n values
Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a
binary tree.

Algorithm Theory, WS 2015/16 Fabian Kuhn 8



Computing the Maximum

UNI
FREIBURG

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O(1) time using n processors

Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers
between 1 and +/n can be computed in time 0(1) using O(n) proc.

Proof:

We have y/n memory cells f;, ..., f s for the possible values
Initialize all f; == 1
For the n values x4, ..., x,,, processor j sets ij =0

— Since only zeroes are written, concurrent writes are OK

Now, f; = 0 iff value i occurs at least once
Strong CRCW machine: max. value in time 0 (1) w. 0(y/n) proc.
Weak CRCW machine: time 0 (1) using O(n) proc. (prev. lemma)

Algorithm Theory, WS 2015/16 Fabian Kuhn 9



Computing the Maximum

UNI
FREIBURG

Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using
O (n) processors on a weak CRCW machine.

Proof:

log, n

First look at highest order bits

The maximum value also has the maximum among those bits
There are only y/n possibilities for these bits

log, n

max. of highest order bits can be computed in O(1) time

log, n

For those with largest highest order bits, continue with

log, n

next block of bits, ...

Algorithm Theory, WS 2015/16 Fabian Kuhn 10



Prefix Sums

UNI
|

FREIBURG

* The following works for any associative binary operator @:

associativity: (a®b)Dc = aP(bDc)

All-Prefix-Sums: Given a sequence of n values a4, ..., a,,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,S2,...,S, = a1, a1Da,,a;Da,Das,...,a;D - Da,

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3

Algorithm Theory, WS 2015/16 Fabian Kuhn 11



Computing the Sum

UNI
|

FREIBURG

* Let'sfirstlookats, = a;®Da,d - Da,

* Parallelize using a binary tree:

Algorithm Theory, WS 2015/16 Fabian Kuhn

12



Computing the Sum

UNI

Lemma: The sum s, = a;Da,® --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

Proof:

Corollary: The sum s,, can be computed in time O(log n) using
O(n/logn) processors on an EREW PRAM.

Proof:
* Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

FREIBURG



UNI

Getting The Prefix Sums

FREIBURG

* Instead of computing the sequence s4, s>, ..., S, let’s compute
71y, Ty = 0,81,85, ..., 51 (0: neutral element w.r.t. @)

r, .., =0,a,a1Da,, ..., a;D - Da,,_4

* Together with s,,, this gives all prefix sums
* Prefixsumr; =s;_1 =a,D - Da;_q:

©
© ©
©) © ©) )

@ (& @ (o @ (@ @ (@
@ @@ @ @ W @@ @ we @ @ e @

ri14

Algorithm Theory, WS 2015/16 Fabian Kuhn (513) 14



Getting The Prefix Sums

|
FRE:BURG

UNI

Claim: The prefixsumr; = a,® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing q;
such that v is in the right sub-tree of u.

©
© ©
©) ©. (@) ©.

@ (& @ (@ @ (@ @ (@
@ @@ @ @ e @ @ e @ @ e @

Algorithm Theory, WS 2015/16 Fabian Kuhn 15



UNI

Computing The Prefix Sums

FREIBURG

For each node v of the binary tree, define r(v) as follows:

* r(v)isthesum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of wu.

For a leaf node v holding value a;: r(v) = r; = s;_4

For the root node: r(root) = 0

For all other nodes v: v is the right child of u:

(u has left child w)

ﬁ v is the left child of u: @/@\@ () = r(u) + S
r(v) =r(u)

A (S: sum of values in

sub-tree of w)

Algorithm Theory, WS 2015/16 Fabian Kuhn 16



UNI

Computing The Prefix Sums

FREIBURG

* leaf node v holdingvalue a;: r(v) =r; = s;_4
* root node: r(root) =0

* Node v is the left child of u: r(v) = r(u)
 Node vistherightchildofu:r(v) =r(u) +S

— Where: S = sum of values in left sub-tree of u

Algorithm to compute values r(v):
1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O(logn) with O(n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O(logn) with O(n) total work

Algorithm Theory, WS 2015/16 Fabian Kuhn 17



Exa

mple

UNI
|

FREIBURG

1. Compute sums of all sub-trees

Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)

Top-down (starting at the root)

0
52
0 21
21 3D
0 10 2 34
(19) (1) (13) (18
0 11 10 19 21 30 34 43
(1) OO (9)
@ @0 @ © 60 © 6 0O ®» W 600 @
0 311 11 10 16 19 21 21 29 30 31 34 38 43 50

Algorithm Theory, WS 2015/16 Fabian Kuhn 18



Computing Prefix Sums

UNI
|

FREIBURG

Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
S; = a1 - Da; (for1 < i < n)can be computed in time O(logn)
using O(n/logn) processors on an EREW PRAM.

Proof:

* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

* The same is true for the top-down step to compute the r(v)

* The theorem then follows from Brent’s theorem:

T
T, = 0(n), To = 0(ogn) = Ty < Te _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2015/16 Fabian Kuhn 19



