

Chapter 10 Parallel Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

PRAM

- Parallel version of <u>RAM</u> model
- *p* processors, shared random access memory

- Basic operations / access to shared memory cost 1
- Processor operations are synchronized
- Focus on parallelizing computation rather than cost of communication, locality, faults, asynchrony, ...

Parallel Computations

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

 $T_p \leq \frac{T_1 - T_{\infty}}{p} + T_{\infty} \leq \frac{T_1}{p} + T_{\infty}$

PS TI

Corollary: Greedy is a <u>2</u>-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p = O(T_1/T_{\infty})$, it is possible to achieve a linear speed-up.

Algorithm Theory, WS 2015/16

Fabian Kuhn

PRAM

Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):

- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to specified
 - Weak CRCW: concurrent write only OK if all processors write 0
 - Common-mode CRCW: all processors need to write the same value
 - Arbitrary-winner CRCW: adversary picks one of the values
 - Priority CRCW: value of processor with highest ID is written
 - Strong CRCW: largest (or smallest) value is written
- The given models are ordered in strength:

weak \leq common-mode \leq arbitrary-winner \leq priority \leq strong

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

• Each (parallel) step on the <u>CRCW</u> machine can be simulated by $O(\log p)$ steps on an <u>EREW</u> machine

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time O(t) using $O(p^2)$ processors on a weak CRCW machine

FREBURG

Given: *n* values

Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a binary tree.

Computing the Maximum

FREIBURG

Observation: On a strong CRCW machine, the maximum of a n values can be computed in O(1) time using n processors

- Each value is concurrently written to the same memory cell **Lemma:** On a weak CRCW machine, the maximum of <u>n integers</u> between 1 and \sqrt{n} can be computed in time O(1) using O(n) proc. **Proof:**
- We have \sqrt{n} memory cells $f_1, ..., f_{\sqrt{n}}$ for the possible values
- Initialize all $f_i \coloneqq 1$ $f_X \neq X$
- For the *n* values $\underline{x_1}$, ..., $\underline{x_n}$, processor *j* sets $f_{x_j} \coloneqq 0$
 - Since only zeroes are written, concurrent writes are OK weak CPCW
- Now, $f_i = 0$ iff value *i* occurs at least once
- Strong CRCW machine: max. value in time O(1) w. $O(\sqrt{n})$ proc.
- Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma) Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Computing the Maximum """ ~ ?" ~ ~ Poly ~ ?

Theorem: If each value can be represented using $O(\log n)$ bits, the maximum of n (integer) values can be computed in time O(1) using O(n) processors on a weak CRCW machine.

Proof:

• First look at $\frac{\log_2 n}{2}$ highest order bits

- The maximum value also has the maximum among those bits
- There are only \sqrt{n} possibilities for these bits

1--- le logele

- max. of $\frac{\log_2 n}{2}$ highest order bits can be computed in O(1) time
- For those with largest $\frac{\log_2 n}{2}$ highest order bits, continue with next block of $\frac{\log_2 n}{2}$ bits, ...

Prefix Sums

• The following works for any associative binary operator \bigoplus : **associativity:** $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

All-Prefix-Sums: Given a sequence of n values $\underline{a_1, \dots, a_n}$, the allprefix-sums operation w.r.t. \bigoplus returns the sequence of prefix sums: $\underline{s_1, s_2, \dots, s_n} = \underline{a_1, a_1 \oplus a_2, a_1 \oplus a_2 \oplus a_3, \dots, a_1 \oplus \dots \oplus a_n}$

• Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: +, input: $a_1, \dots, a_8 = 3, 1, 7, 0, 4, 1, 6, 3$

$$s_1, \ldots, s_8 = 3, 3 + 1 = 9, 11, 11, 15, 6, 22, 25$$

Computing the Sum

- Let's first look at $s_n = a_1 \oplus a_2 \oplus \dots \oplus a_n$
- Parallelize using a binary tree:

Brent's thin: $T_p = O\left(\frac{n}{p} + \log n\right)$

Computing the Sum

Lemma: The sum $s_n = a_1 \oplus a_2 \oplus \cdots \oplus a_n$ can be computed in time $O(\log n)$ on an EREW PRAM. The total number of operations (total work) is O(n).

Proof:

Corollary: The sum s_n can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM. **Proof:**

• Follows from Brent's theorem $(T_1 = O(n), T_{\infty} = O(\log n))$

Getting The Prefix Sums $S_i = r_i \oplus q_i$

- Instead of computing the sequence s_1, s_2, \dots, s_n let's compute $r_1, \dots, r_n = 0, s_1, s_2, \dots, s_{n-1}$ (0: neutral element w.r.t. \oplus) $r_1, \dots, r_n = 0, a_1, a_1 \oplus a_2, \dots, a_1 \oplus \dots \oplus a_{n-1}$
- Together with s_n , this gives all prefix sums
- Prefix sum $r_i = s_{i-1} = a_1 \oplus \cdots \oplus a_{i-1}$: \oplus (a_7) (a_9) a_5 a_4 a_8 a_6 a_{10} a_1 (a_{12})

Algorithm Theory, WS 2015/16

Fabian Kuhn

14

Getting The Prefix Sums

Claim: The prefix sum $r_i = a_1 \oplus \cdots \oplus a_{i-1}$ is the sum of all the leaves in the left sub-tree of ancestor u of the leaf v containing a_i such that v is in the right sub-tree of u.

Computing The Prefix Sums

For each node v of the binary tree, define r(v) as follows:

• r(v) is the sum of the values a_i at the leaves in all the left subtrees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value $a_i: \underline{r(v)} = \underline{r_i} = \underline{s_{i-1}}$

Computing The Prefix Sums

- leaf node v holding value $a_i: \mathbf{r}(\mathbf{v}) = \mathbf{r}_i = \mathbf{s}_{i-1}$
- root node: *r*(root) = 0
- Node v is the left child of u: r(v) = r(u)
- Node v is the right child of u: r(v) = r(u) + S
 - Where: S =sum of values in left sub-tree of u

Algorithm to compute values r(v):

- 1. Compute sum of values in each sub-tree (bottom-up)
 - Can be done in parallel time $O(\log n)$ with O(n) total work
- 2. Compute values r(v) top-down from root to leaves:
 - To compute the value r(v), only r(u) of the parent u and the sum of the left sibling (if v is a right child) are needed
 - Can be done in parallel time $O(\log n)$ with O(n) total work

Example

- 1. Compute sums of all sub-trees
 - Bottom-up (level-wise in parallel, starting at the leaves)
- 2. Compute values r(v)
 - Top-down (starting at the root)

UNI FREIBURG

Theorem: Given a sequence $a_1, ..., a_n$ of n values, all prefix sums $s_i = a_1 \oplus \cdots \oplus a_i$ (for $1 \le i \le n$) can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

Proof:

- Computing the sums of all sub-trees can be done in parallel in time O(log n) using O(n) total operations.
- The same is true for the top-down step to compute the r(v)
- The theorem then follows from Brent's theorem:

$$\underline{T_1 = O(n)}, \quad \underline{T_\infty = O(\log n)} \quad \Rightarrow \quad \underline{T_p < T_\infty + \frac{T_1}{p}}$$

Remark: This can be adapted to other parallel models and to different ways of storing the value (e.g., array or list)

Fabian Kuhn