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PRAM 

• Parallel version of RAM model 

• 𝑝 processors, shared random access memory 

 

 

 

 

 

 

• Basic operations / access to shared memory cost 1 

• Processor operations are synchronized 

• Focus on parallelizing computation rather than cost of 
communication, locality, faults, asynchrony, … 
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Parallel Computations 

𝑻𝒑: time to perform comp. with 𝑝 procs 
 

• Lower Bounds: 
 

𝑇𝑝 ≥
𝑇1
𝑝
, 𝑇𝑝 ≥ 𝑇∞ 

 

• Parallelism: 
𝑇1

𝑇∞
 

 

– maximum possible speed-up 

 

• Linear Speed-up: 
𝑇𝑝
𝑇1

= Θ(𝑝) 

𝑻𝟏 = 𝟏𝟏 

𝑻∞ = 𝟓 
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Brent’s Theorem 

Brent’s Theorem: On 𝑝 processors, a parallel computation can be 
performed in time 

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞. 

 

Corollary: Greedy is a 2-approximation algorithm for scheduling. 

 

 

 

 

 

Corollary: As long as the number of processors 𝑝 = O 𝑇1 𝑇∞ , it is 
possible to achieve a linear speed-up. 
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PRAM 

Back to the PRAM: 

• Shared random access memory, synchronous computation steps 

• The PRAM model comes in variants… 
 

EREW (exclusive read, exclusive write): 

• Concurrent memory access by multiple processors is not allowed 

• If two or more processors try to read from or write to the same 
memory cell concurrently, the behavior is not specified 

 

CREW (concurrent read, exclusive write): 

• Reading the same memory cell concurrently is OK 

• Two concurrent writes to the same cell lead to unspecified 
behavior 

• This is the first variant that was considered (already in the 70s) 
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PRAM 

The PRAM model comes in variants… 
 

CRCW (concurrent read, concurrent write): 

• Concurrent reads and writes are both OK 

• Behavior of concurrent writes has to specified 
– Weak CRCW: concurrent write only OK if all processors write 0 

– Common-mode CRCW: all processors need to write the same value 

– Arbitrary-winner CRCW: adversary picks one of the values 

– Priority CRCW: value of processor with highest ID is written 

– Strong CRCW: largest (or smallest) value is written 

 

• The given models are ordered in strength:  
 

weak ≤ common-mode ≤ arbitrary-winner ≤ priority ≤ strong 
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Some Relations Between PRAM Models 

Theorem: A parallel computation that can be performed in time 𝑡, 
using 𝑝 proc. on a strong CRCW machine, can also be performed in 
time 𝑂(𝑡 log 𝑝) using 𝑝 processors on an EREW machine. 

• Each (parallel) step on the CRCW machine can be simulated by 
𝑂(log 𝑝) steps on an EREW machine 

 

 

Theorem: A computation that can be performed in time 𝑡, using 𝑝 
processors on a strong CRCW machine, can also be performed in 
time 𝑂(𝑡) using 𝑂 𝑝2  processors on a weak CRCW machine 
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Computing the Maximum 

Given: 𝑛 values 

Goal:  find the maximum value 
 

Observation: The maximum can be computed in parallel by using a 
binary tree. 
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Computing the Maximum 

Observation: On a strong CRCW machine, the maximum of a 𝑛 
values can be computed in 𝑂(1) time using 𝑛 processors 

• Each value is concurrently written to the same memory cell 
 

Lemma: On a weak CRCW machine, the maximum of 𝑛 integers 
between 1 and 𝑛 can be computed in time 𝑂 1  using 𝑂 𝑛  proc.  

Proof: 

• We have 𝑛 memory cells 𝑓1, … , 𝑓 𝑛 for the possible values 

• Initialize all 𝑓𝑖 ≔ 1 

• For the 𝑛 values 𝑥1, … , 𝑥𝑛, processor 𝑗 sets 𝑓𝑥𝑗 ≔ 0 

– Since only zeroes are written, concurrent writes are OK 

• Now, 𝑓𝑖 = 0 iff value 𝑖 occurs at least once 

• Strong CRCW machine: max. value in time 𝑂(1) w. 𝑂 𝑛  proc. 

• Weak CRCW machine: time 𝑂(1) using 𝑂 𝑛  proc. (prev. lemma) 
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Computing the Maximum 

Theorem: If each value can be represented using 𝑂 log 𝑛  bits, the 
maximum of 𝑛 (integer) values can be computed in time 𝑂(1) using 
𝑂(𝑛) processors on a weak CRCW machine. 
 

Proof: 

• First look at 
log2 𝑛

2
 highest order bits 

• The maximum value also has the maximum among those bits 

• There are only 𝑛 possibilities for these bits 

• max. of 
log2 𝑛

2
 highest order bits can be computed in 𝑂 1  time 

• For those with largest 
log2 𝑛

2
 highest order bits, continue with 

next block of 
log2 𝑛

2
 bits, … 
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Prefix Sums 

• The following works for any associative binary operator ⨁: 
 

associativity:        𝑎⨁𝑏 ⨁𝑐 = 𝑎⨁ 𝑏⨁𝑐  
 

All-Prefix-Sums: Given a sequence of 𝑛 values 𝑎1, … , 𝑎𝑛, the all-
prefix-sums operation w.r.t. ⨁ returns the sequence of prefix sums: 
 

𝑠1, 𝑠2, … , 𝑠𝑛 = 𝑎1, 𝑎1⨁𝑎2, 𝑎1⨁𝑎2⨁𝑎3, … , 𝑎1⨁⋯⨁𝑎𝑛 
 

• Can be computed efficiently in parallel and turns out to be an 
important building block for designing parallel algorithms 

 

Example: Operator: +, input: 𝑎1, … , 𝑎8 = 3, 1, 7, 0, 4, 1, 6, 3 
 
𝑠1, … , 𝑠8 =  
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Computing the Sum 

• Let’s first look at 𝑠𝑛 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛 
 

• Parallelize using a binary tree: 
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Computing the Sum 

Lemma: The sum 𝑠𝑛 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛 can be computed in 
time 𝑂(log 𝑛) on an EREW PRAM. The total number of 
operations (total work) is 𝑂(𝑛). 
 

Proof: 

 

 

 
 

Corollary: The sum 𝑠𝑛 can be computed in time 𝑂 log 𝑛  using 
𝑂 𝑛 log 𝑛  processors on an EREW PRAM. 

Proof: 

• Follows from Brent’s theorem (𝑇1 = 𝑂(𝑛), 𝑇∞ = 𝑂(log 𝑛)) 
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Getting The Prefix Sums 

• Instead of computing the sequence 𝑠1, 𝑠2, … , 𝑠𝑛 let’s compute 
𝑟1, … , 𝑟𝑛 = 0, 𝑠1, 𝑠2, … , 𝑠𝑛−1           (0: neutral element w.r.t. ⨁) 
 

𝑟1, … , 𝑟𝑛 = 0, 𝑎1, 𝑎1⨁𝑎2, … , 𝑎1⨁⋯⨁𝑎𝑛−1 
 

• Together with 𝑠𝑛, this gives all prefix sums 

• Prefix sum 𝑟𝑖 = 𝑠𝑖−1 = 𝑎1⨁⋯⨁𝑎𝑖−1: 

 ⨁  ⨁ 

 ⨁  ⨁  ⨁  ⨁ 

 ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁ 

 ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁ 

 𝒂𝟐  𝒂𝟐  𝒂𝟑  𝒂𝟑  𝒂𝟏  𝒂𝟏  𝒂𝟒  𝒂𝟒  𝒂𝟓  𝒂𝟓  𝒂𝟔  𝒂𝟔  𝒂𝟕  𝒂𝟕  𝒂𝟖  𝒂𝟖  𝒂𝟗  𝒂𝟗  𝒂𝟏𝟎  𝒂𝟏𝟎  𝒂𝟏𝟏  𝒂𝟏𝟏  𝒂𝟏𝟐  𝒂𝟏𝟐  𝒂𝟏𝟑  𝒂𝟏𝟑  𝒂𝟏𝟒  𝒂𝟏𝟒  𝒂𝟏𝟓  𝒂𝟏𝟓  𝒂𝟏𝟔  𝒂𝟏𝟔 

𝒓𝟏𝟒 

(𝒔𝟏𝟑) 
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Getting The Prefix Sums 

Claim: The prefix sum 𝑟𝑖 = 𝑎1⨁⋯⨁𝑎𝑖−1 is the sum of all the 
leaves in the left sub-tree of ancestor 𝑢 of the leaf 𝑣 containing 𝑎𝑖  
such that 𝑣 is in the right sub-tree of 𝑢. 

 ⨁  ⨁ 

 ⨁  ⨁  ⨁  ⨁ 

 ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁ 

 ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁  ⨁ 

 𝒂𝟐  𝒂𝟐  𝒂𝟑  𝒂𝟑  𝒂𝟏  𝒂𝟏  𝒂𝟒  𝒂𝟒  𝒂𝟓  𝒂𝟓  𝒂𝟔  𝒂𝟔  𝒂𝟕  𝒂𝟕  𝒂𝟖  𝒂𝟖  𝒂𝟗  𝒂𝟗  𝒂𝟏𝟎  𝒂𝟏𝟎  𝒂𝟏𝟏  𝒂𝟏𝟏  𝒂𝟏𝟐  𝒂𝟏𝟐  𝒂𝟏𝟑  𝒂𝟏𝟑  𝒂𝟏𝟒  𝒂𝟏𝟒  𝒂𝟏𝟓  𝒂𝟏𝟓  𝒂𝟏𝟔  𝒂𝟏𝟔 
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Computing The Prefix Sums 

For each node 𝒗 of the binary tree, define 𝒓(𝒗) as follows: 

• 𝑟 𝑣  is the sum of the values 𝑎𝑖  at the leaves in all the left sub-
trees of ancestors 𝑢 of 𝑣 such that 𝑣 is in the right sub-tree of 𝑢. 
 

For a leaf node 𝑣 holding value 𝑎𝑖: 𝒓 𝒗 = 𝒓𝒊 = 𝒔𝒊−𝟏 
 

For the root node: 𝒓 𝐫𝐨𝐨𝐭 = 𝟎 
 

For all other nodes 𝑣: 

𝑣 is the left child of 𝑢: 
 

           𝑟 𝑣 = 𝑟(𝑢) 

𝑣 is the left child of 𝑢: 
 

           𝑟 𝑣 = 𝑟(𝑢) 

 𝒖  𝒖 

 𝒗  𝒗 

𝑣 is the right child of 𝑢: 
(𝑢 has left child 𝑤) 

 

                             𝑟 𝑣 = 𝑟 𝑢 + 𝑆 
 

(𝑆: sum of values in 
sub-tree of 𝑤)  

𝑣 is the right child of 𝑢: 
(𝑢 has left child 𝑤) 

 

                             𝑟 𝑣 = 𝑟 𝑢 + 𝑆 
 

(𝑆: sum of values in 
sub-tree of 𝑤)  

 𝒖  𝒖 

 𝒘  𝒘  𝒗  𝒗 

 𝑺  𝑺 
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Computing The Prefix Sums 

• leaf node 𝑣 holding value 𝑎𝑖: 𝒓 𝒗 = 𝒓𝒊 = 𝒔𝒊−𝟏 

• root node: 𝒓 𝐫𝐨𝐨𝐭 = 𝟎 

• Node 𝑣 is the left child of 𝑢: 𝑟 𝑣 = 𝑟(𝑢) 

• Node 𝑣 is the right child of 𝑢: 𝑟 𝑣 = 𝑟 𝑢 + 𝑆 
– Where: 𝑆 = sum of values in left sub-tree of 𝑢 

 

Algorithm to compute values 𝒓(𝒗): 

1. Compute sum of values in each sub-tree (bottom-up) 
– Can be done in parallel time 𝑂 log 𝑛  with 𝑂(𝑛) total work 

2. Compute values 𝑟(𝑣) top-down from root to leaves: 
– To compute the value 𝑟(𝑣), only 𝑟(𝑢) of the parent 𝑢 and the sum of the 

left sibling (if 𝑣 is a right child) are needed 

– Can be done in parallel time 𝑂 log 𝑛  with 𝑂 𝑛  total work 
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Example 

1. Compute sums of all sub-trees 
– Bottom-up (level-wise in parallel, starting at the leaves) 

2. Compute values 𝑟(𝑣) 
– Top-down (starting at the root) 

 𝟖  𝟖  𝟎  𝟎  𝟑  𝟑 −𝟏 −𝟏  𝟔  𝟔  𝟑  𝟑  𝟐  𝟐  𝟎  𝟎  𝟖  𝟖  𝟏  𝟏  𝟏  𝟏  𝟑  𝟑  𝟒  𝟒  𝟓  𝟓  𝟕  𝟕  𝟐  𝟐 

 𝟏𝟏  𝟏𝟏  −𝟏  −𝟏  𝟗  𝟗  𝟗  𝟗  𝟐  𝟐  𝟒  𝟒  𝟗  𝟗  𝟗  𝟗 

 𝟏𝟎  𝟏𝟎  𝟏𝟏  𝟏𝟏  𝟏𝟑  𝟏𝟑  𝟏𝟖  𝟏𝟖 

 𝟐𝟏  𝟐𝟏  𝟑𝟏  𝟑𝟏 

 𝟓𝟐  𝟓𝟐 
𝟎 

𝟎 𝟐𝟏 

𝟎 

𝟎 

𝟎 𝟑 𝟏𝟏 

𝟏𝟏 

𝟏𝟏 

𝟏𝟎 

𝟏𝟎 

𝟏𝟎 𝟏𝟔 

𝟏𝟗 

𝟏𝟗 𝟐𝟏 

𝟐𝟏 

𝟐𝟏 

𝟐𝟏 𝟐𝟗 𝟑𝟎 

𝟑𝟎 

𝟑𝟏 

𝟑𝟒 

𝟑𝟒 

𝟑𝟒 𝟑𝟖 𝟒𝟑 

𝟒𝟑 

𝟓𝟎 
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Computing Prefix Sums 

Theorem: Given a sequence 𝑎1, … , 𝑎𝑛 of 𝑛 values, all prefix sums 
𝑠𝑖 = 𝑎1⨁⋯⨁𝑎𝑖  (for 1 ≤ 𝑖 ≤ 𝑛) can be computed in time 𝑂(log 𝑛) 
using 𝑂 𝑛 log 𝑛  processors on an EREW PRAM. 
 

Proof: 

• Computing the sums of all sub-trees can be done in parallel in 
time 𝑂 log 𝑛  using 𝑂 𝑛  total operations. 

• The same is true for the top-down step to compute the 𝑟(𝑣) 

• The theorem then follows from Brent’s theorem: 
 

𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂 log 𝑛      ⟹     𝑇𝑝 < 𝑇∞ +
𝑇1
𝑝

 

 

Remark: This can be adapted to other parallel models and to 
different ways of storing the value (e.g., array or list) 


