
Chapter 10

Parallel Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

PRAM

• Parallel version of RAM model

• 𝑝 processors, shared random access memory

• Basic operations / access to shared memory cost 1

• Processor operations are synchronized

• Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, …

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Parallel Computations

𝑻𝒑: time to perform comp. with 𝑝 procs

• Lower Bounds:

𝑇𝑝 ≥
𝑇1
𝑝
, 𝑇𝑝 ≥ 𝑇∞

• Parallelism:
𝑇1

𝑇∞

– maximum possible speed-up

• Linear Speed-up:
𝑇𝑝
𝑇1

= Θ(𝑝)

𝑻𝟏 = 𝟏𝟏

𝑻∞ = 𝟓

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Brent’s Theorem

Brent’s Theorem: On 𝑝 processors, a parallel computation can be
performed in time

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞.

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors 𝑝 = O 𝑇1 𝑇∞ , it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

PRAM

Back to the PRAM:

• Shared random access memory, synchronous computation steps

• The PRAM model comes in variants…

EREW (exclusive read, exclusive write):

• Concurrent memory access by multiple processors is not allowed

• If two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

• Reading the same memory cell concurrently is OK

• Two concurrent writes to the same cell lead to unspecified
behavior

• This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

PRAM

The PRAM model comes in variants…

CRCW (concurrent read, concurrent write):

• Concurrent reads and writes are both OK

• Behavior of concurrent writes has to specified
– Weak CRCW: concurrent write only OK if all processors write 0

– Common-mode CRCW: all processors need to write the same value

– Arbitrary-winner CRCW: adversary picks one of the values

– Priority CRCW: value of processor with highest ID is written

– Strong CRCW: largest (or smallest) value is written

• The given models are ordered in strength:

weak ≤ common-mode ≤ arbitrary-winner ≤ priority ≤ strong

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time 𝑡,
using 𝑝 proc. on a strong CRCW machine, can also be performed in
time 𝑂(𝑡 log 𝑝) using 𝑝 processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by
𝑂(log 𝑝) steps on an EREW machine

Theorem: A computation that can be performed in time 𝑡, using 𝑝
processors on a strong CRCW machine, can also be performed in
time 𝑂(𝑡) using 𝑂 𝑝2 processors on a weak CRCW machine

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Computing the Maximum

Given: 𝑛 values

Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a
binary tree.

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Computing the Maximum

Observation: On a strong CRCW machine, the maximum of a 𝑛
values can be computed in 𝑂(1) time using 𝑛 processors

• Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of 𝑛 integers
between 1 and 𝑛 can be computed in time 𝑂 1 using 𝑂 𝑛 proc.

Proof:

• We have 𝑛 memory cells 𝑓1, … , 𝑓 𝑛 for the possible values

• Initialize all 𝑓𝑖 ≔ 1

• For the 𝑛 values 𝑥1, … , 𝑥𝑛, processor 𝑗 sets 𝑓𝑥𝑗 ≔ 0

– Since only zeroes are written, concurrent writes are OK

• Now, 𝑓𝑖 = 0 iff value 𝑖 occurs at least once

• Strong CRCW machine: max. value in time 𝑂(1) w. 𝑂 𝑛 proc.

• Weak CRCW machine: time 𝑂(1) using 𝑂 𝑛 proc. (prev. lemma)

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Computing the Maximum

Theorem: If each value can be represented using 𝑂 log 𝑛 bits, the
maximum of 𝑛 (integer) values can be computed in time 𝑂(1) using
𝑂(𝑛) processors on a weak CRCW machine.

Proof:

• First look at
log2 𝑛

2
 highest order bits

• The maximum value also has the maximum among those bits

• There are only 𝑛 possibilities for these bits

• max. of
log2 𝑛

2
 highest order bits can be computed in 𝑂 1 time

• For those with largest
log2 𝑛

2
 highest order bits, continue with

next block of
log2 𝑛

2
 bits, …

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Prefix Sums

• The following works for any associative binary operator ⨁:

associativity: 𝑎⨁𝑏 ⨁𝑐 = 𝑎⨁ 𝑏⨁𝑐

All-Prefix-Sums: Given a sequence of 𝑛 values 𝑎1, … , 𝑎𝑛, the all-
prefix-sums operation w.r.t. ⨁ returns the sequence of prefix sums:

𝑠1, 𝑠2, … , 𝑠𝑛 = 𝑎1, 𝑎1⨁𝑎2, 𝑎1⨁𝑎2⨁𝑎3, … , 𝑎1⨁⋯⨁𝑎𝑛

• Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: 𝑎1, … , 𝑎8 = 3, 1, 7, 0, 4, 1, 6, 3

𝑠1, … , 𝑠8 =

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

Computing the Sum

• Let’s first look at 𝑠𝑛 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛

• Parallelize using a binary tree:

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Computing the Sum

Lemma: The sum 𝑠𝑛 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛 can be computed in
time 𝑂(log 𝑛) on an EREW PRAM. The total number of
operations (total work) is 𝑂(𝑛).

Proof:

Corollary: The sum 𝑠𝑛 can be computed in time 𝑂 log 𝑛 using
𝑂 𝑛 log 𝑛 processors on an EREW PRAM.

Proof:

• Follows from Brent’s theorem (𝑇1 = 𝑂(𝑛), 𝑇∞ = 𝑂(log 𝑛))

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Getting The Prefix Sums

• Instead of computing the sequence 𝑠1, 𝑠2, … , 𝑠𝑛 let’s compute
𝑟1, … , 𝑟𝑛 = 0, 𝑠1, 𝑠2, … , 𝑠𝑛−1 (0: neutral element w.r.t. ⨁)

𝑟1, … , 𝑟𝑛 = 0, 𝑎1, 𝑎1⨁𝑎2, … , 𝑎1⨁⋯⨁𝑎𝑛−1

• Together with 𝑠𝑛, this gives all prefix sums

• Prefix sum 𝑟𝑖 = 𝑠𝑖−1 = 𝑎1⨁⋯⨁𝑎𝑖−1:

 ⨁ ⨁

 ⨁ ⨁ ⨁ ⨁

 ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

 ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

 𝒂𝟐 𝒂𝟐 𝒂𝟑 𝒂𝟑 𝒂𝟏 𝒂𝟏 𝒂𝟒 𝒂𝟒 𝒂𝟓 𝒂𝟓 𝒂𝟔 𝒂𝟔 𝒂𝟕 𝒂𝟕 𝒂𝟖 𝒂𝟖 𝒂𝟗 𝒂𝟗 𝒂𝟏𝟎 𝒂𝟏𝟎 𝒂𝟏𝟏 𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟏𝟑 𝒂𝟏𝟒 𝒂𝟏𝟒 𝒂𝟏𝟓 𝒂𝟏𝟓 𝒂𝟏𝟔 𝒂𝟏𝟔

𝒓𝟏𝟒

(𝒔𝟏𝟑)

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Getting The Prefix Sums

Claim: The prefix sum 𝑟𝑖 = 𝑎1⨁⋯⨁𝑎𝑖−1 is the sum of all the
leaves in the left sub-tree of ancestor 𝑢 of the leaf 𝑣 containing 𝑎𝑖
such that 𝑣 is in the right sub-tree of 𝑢.

 ⨁ ⨁

 ⨁ ⨁ ⨁ ⨁

 ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

 ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

 𝒂𝟐 𝒂𝟐 𝒂𝟑 𝒂𝟑 𝒂𝟏 𝒂𝟏 𝒂𝟒 𝒂𝟒 𝒂𝟓 𝒂𝟓 𝒂𝟔 𝒂𝟔 𝒂𝟕 𝒂𝟕 𝒂𝟖 𝒂𝟖 𝒂𝟗 𝒂𝟗 𝒂𝟏𝟎 𝒂𝟏𝟎 𝒂𝟏𝟏 𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟏𝟑 𝒂𝟏𝟒 𝒂𝟏𝟒 𝒂𝟏𝟓 𝒂𝟏𝟓 𝒂𝟏𝟔 𝒂𝟏𝟔

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

Computing The Prefix Sums

For each node 𝒗 of the binary tree, define 𝒓(𝒗) as follows:

• 𝑟 𝑣 is the sum of the values 𝑎𝑖 at the leaves in all the left sub-
trees of ancestors 𝑢 of 𝑣 such that 𝑣 is in the right sub-tree of 𝑢.

For a leaf node 𝑣 holding value 𝑎𝑖: 𝒓 𝒗 = 𝒓𝒊 = 𝒔𝒊−𝟏

For the root node: 𝒓 𝐫𝐨𝐨𝐭 = 𝟎

For all other nodes 𝑣:

𝑣 is the left child of 𝑢:

 𝑟 𝑣 = 𝑟(𝑢)

𝑣 is the left child of 𝑢:

 𝑟 𝑣 = 𝑟(𝑢)

 𝒖 𝒖

 𝒗 𝒗

𝑣 is the right child of 𝑢:
(𝑢 has left child 𝑤)

 𝑟 𝑣 = 𝑟 𝑢 + 𝑆

(𝑆: sum of values in
sub-tree of 𝑤)

𝑣 is the right child of 𝑢:
(𝑢 has left child 𝑤)

 𝑟 𝑣 = 𝑟 𝑢 + 𝑆

(𝑆: sum of values in
sub-tree of 𝑤)

 𝒖 𝒖

 𝒘 𝒘 𝒗 𝒗

 𝑺 𝑺

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Computing The Prefix Sums

• leaf node 𝑣 holding value 𝑎𝑖: 𝒓 𝒗 = 𝒓𝒊 = 𝒔𝒊−𝟏

• root node: 𝒓 𝐫𝐨𝐨𝐭 = 𝟎

• Node 𝑣 is the left child of 𝑢: 𝑟 𝑣 = 𝑟(𝑢)

• Node 𝑣 is the right child of 𝑢: 𝑟 𝑣 = 𝑟 𝑢 + 𝑆
– Where: 𝑆 = sum of values in left sub-tree of 𝑢

Algorithm to compute values 𝒓(𝒗):

1. Compute sum of values in each sub-tree (bottom-up)
– Can be done in parallel time 𝑂 log 𝑛 with 𝑂(𝑛) total work

2. Compute values 𝑟(𝑣) top-down from root to leaves:
– To compute the value 𝑟(𝑣), only 𝑟(𝑢) of the parent 𝑢 and the sum of the

left sibling (if 𝑣 is a right child) are needed

– Can be done in parallel time 𝑂 log 𝑛 with 𝑂 𝑛 total work

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Example

1. Compute sums of all sub-trees
– Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values 𝑟(𝑣)
– Top-down (starting at the root)

 𝟖 𝟖 𝟎 𝟎 𝟑 𝟑 −𝟏 −𝟏 𝟔 𝟔 𝟑 𝟑 𝟐 𝟐 𝟎 𝟎 𝟖 𝟖 𝟏 𝟏 𝟏 𝟏 𝟑 𝟑 𝟒 𝟒 𝟓 𝟓 𝟕 𝟕 𝟐 𝟐

 𝟏𝟏 𝟏𝟏 −𝟏 −𝟏 𝟗 𝟗 𝟗 𝟗 𝟐 𝟐 𝟒 𝟒 𝟗 𝟗 𝟗 𝟗

 𝟏𝟎 𝟏𝟎 𝟏𝟏 𝟏𝟏 𝟏𝟑 𝟏𝟑 𝟏𝟖 𝟏𝟖

 𝟐𝟏 𝟐𝟏 𝟑𝟏 𝟑𝟏

 𝟓𝟐 𝟓𝟐
𝟎

𝟎 𝟐𝟏

𝟎

𝟎

𝟎 𝟑 𝟏𝟏

𝟏𝟏

𝟏𝟏

𝟏𝟎

𝟏𝟎

𝟏𝟎 𝟏𝟔

𝟏𝟗

𝟏𝟗 𝟐𝟏

𝟐𝟏

𝟐𝟏

𝟐𝟏 𝟐𝟗 𝟑𝟎

𝟑𝟎

𝟑𝟏

𝟑𝟒

𝟑𝟒

𝟑𝟒 𝟑𝟖 𝟒𝟑

𝟒𝟑

𝟓𝟎

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Computing Prefix Sums

Theorem: Given a sequence 𝑎1, … , 𝑎𝑛 of 𝑛 values, all prefix sums
𝑠𝑖 = 𝑎1⨁⋯⨁𝑎𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) can be computed in time 𝑂(log 𝑛)
using 𝑂 𝑛 log 𝑛 processors on an EREW PRAM.

Proof:

• Computing the sums of all sub-trees can be done in parallel in
time 𝑂 log 𝑛 using 𝑂 𝑛 total operations.

• The same is true for the top-down step to compute the 𝑟(𝑣)

• The theorem then follows from Brent’s theorem:

𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂 log 𝑛 ⟹ 𝑇𝑝 < 𝑇∞ +
𝑇1
𝑝

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

