Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI

FREIBURG

PRAM

UNI
|

FREIBURG

e Parallel version of RAM model

—_—

* p processors, shared random access memory

* Basic operations / access to shared memory cost 1
* Processor operations are synchronized

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Parallel Computations

UNI

FREIBURG

T ,: time to perform comp. with p procs

—

e Lower Bounds:

wo—‘ S
7.~ —_ &
T,>—, T,=T,
P
T;

 Parallelism: —
o0

— maximum possible speed-up

* Linear Speed-up:
T

7. = 0@

Algorithm Theory, WS 2015/16 Fabian Kuhn

FREIBURG

Brent’s Theorem

UNI

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

T, — T, T

TpS +Too = "'*_(oo
p g

- O

LR

Corollary: Greedy is aiapproximation algorithm for scheduling.

Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

PRAM

UNI
FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps

e The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior
* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

PRAM

UNI

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
* Concurrent reads and writes are both OK
e Behavior of concurrent writes has to specified

— Weak CRCW: concurrent write only OK if all processors write 0

— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values

— Priority CRCW: value of processor with highest ID is written

— Strong CRCW: largest (or smallest) value is written

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

FREIBURG

Some Relations Between PRAM Models :

UNI
FREIBURG

Theorem: A parallel computation that can be performed in tim%
using p proc. on a strong CRCW machine, can also be performed in
time O(t logp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

\mlf« ulv;#‘e"‘

largest
&
Theorem: A computatMcan be performed in time ¢, using 3 D
processors on a strong CRCW machine, can also be performed in
time O(t) using O(p?) processors on a weak CRCW machine

W h\a O councun. s K

o—;\l7 W

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

UNI

Computing the Maximum

FREIBURG

Given: n values
Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a
binary tree.

EREW

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

UNI

Computing the Maximum -

FREIBURG

\\

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O(1) time using n processors

* Each value is concurrently written to the same memory cell
—— ke Os 3 OK

Lemma: On a weak CRCW machine, the maximum of n integers
between 1 and \/ﬁ can be computed in time O(1) using O(ng proc.

e S

Proof: L) i) D 7 @

?
* We haven memoFy cells fi f\/— for the possible values
¢ Initialize all f; := 1 £

* Forthe nvalues xq, ..., X, processor j sets fx = 0
— Since only zeroes are written, concurrent writes are OK <=—°* weak CRCW
* Now, f; = 0 iff value i occurs at least once
* Strong CRCW machine: max. value in time O(1) w. 0(\/_) proc.
e Weak CRCW machine: time 0 (1) using O(n) proc. (prev lemma)

Algorithm Theory, WS 2015/16 Fabian Kuhn T— 9

anl&Qf,i ?" -~y Po(?aoz

Computing the Maximum

UNI
|

FREIBURG

Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using
O (n) processors on a weak CRCW machine.

— P .
e Lo p— pap— —
Proof: ‘ A ==l
| (-~ e E— Y
[O n . .
* First look at —22 highest order bits fr ™2z

* The maximum value also has the maximum among those bits
* There are only \/n possibilities for these bits

log, n

* max. of highest order bits can be computed in O(1) time

log, n

* For those with largest highest order bits, continue with

log, n

next block of bits, ...

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

UNI
FREIBURG

Prefix Sums

* The following works for any associative binary operator @:
=

associativity: (a®b)Dc = a®(bBc)

All-Prefix-Sums: Given a sequence of n values a4, ..., a,,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:
— 3

S1,S2,...,S, = a1, a1Da,,a;Da,Das,...,a;D - Da,

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

=0
Example: Operator:i, input: aq,...,ag =3,1,7,0,4,1, 6,§

S1, -, Sg = 3, 3+|.-.1/ 0, 0,18, &, 22, 25"

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Computing the Sum

UNI
|

FREIBURG

* Let'sfirstlookats, = a;®Da,d - Da,

* Parallelize using a binary tree:

—\-OJN(:ﬂ‘-og ogs (wti«(z)’

—T': O(h)
.S_E“_“ T,h = O(ﬁ% o\)

1 /59\

e A A

¢ AN A A 7\
o ﬁ}g(%g"s)

Algorithm Theory, WS 2015/16 Fabian Kuhn

Beads ‘(‘Q«w‘:
o= 5 v 4%)

7=05)

12

Computing the Sum

UNI

Lemma: The sum s, = a;Da,® --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O(n).

Proof:

Corollary: The sum s,, can be computed in time 0(logn) using
O(n/logn) processors on an EREW PRAM.

Proof:

* Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

FREIBURG

UNI

Getting The Prefix Sums s;= nes;

FREIBURG

* Instead of computing the sequence s4, s>, ..., S, let’s compute
T ey = 0,81, 89, o), Sy (0: neutral element w.r.t. @)

—_—

r, .., =0,a,a1Da,, ..., a;D - Da,,_4

* Together with s,,, this gives all prefix sums
* Prefixsumr; =s;_1 =a,D - Da;_q:

©
© ©

©) © ©))

@ (& @ (o @ (@ @ (@
@ 0w @ © W @ © W @@@

Algorithm Theory, WS 2015/16 Fabian Kuhn (513)

Getting The Prefix Sums

UNI

FREIBURG

Claim: The prefixsumr; = a,® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing a;
such that v is in the right sub-tree of u. o

— @3
® @
@ © (@)
@ @ @ @ @ @ @
@@@@@@@@@@@@@
\‘.w)/\/

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

UNI

Computing The Prefix Sums

FREIBURG

For each node v of the binary tree, define r(v) as follows:

e r(v)isthe sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of w.

For a leaf node v holding value a;: r(v) = r; = s;_4

For the root node: r(root) = 0

X
For all other nodes v: M/ v is the right child of u:
) 5 (u has left child w)

v is the left child of u:
= rlv) =r(uw)+S
ﬁ r(v) =r(u) = =

(S: sum of values in
sub-tree of w)

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

UNI

Computing The Prefix Sums

FREIBURG

* leaf node v holdingvalue a;: r(v) =r; = s;_4

* root node: r(root) =0 A
* Node v is the left child of u: r(v) = r(u) /fﬂz‘(/(&
 Node vistherightchildofu:r(v) =r(u) +S 0
— Where: § = sum of values in left sub-tree of u ° \i*' >
S

Algorithm to compute values r(v): —
1. Compute sum of values in each sub-tree (bottom-up) ;
— Can be done in parallel time O(logn) with O (n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time 0(10571) with O(Zn) total work

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Example

UNI
|

FREIBURG

1. Compute sums of all sub-trees
— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)

— Top-down (starting at the root)

(52)
0 21

@y &

0 10 2 34

© G T

0 11 10 19 21 30 34 43

LN ONNO ONENO (9)

@ @0 @ © 60 © 6 0O ®» W 600 @
© 311 11 10 1619 21 21 2930 311 34 3843 5Q

VN‘Y—R SUus

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Computing Prefix Sums

UNI
|

FREIBURG

Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
S; = a1 - Da; (for1 < i < n)can be computed in time O(logn)
using O(n/logn) processors on an EREW PRAM.

Proof:

* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

* The same is true for t—ﬂaop-down step to compute the r(v)

* The theorem then follows from Brent’s theorem:

T
T, = 0(n), To = 0(ogn) = Ty < Te _|_?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

