
Chapter 10

Parallel Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Brent’s Theorem

Brent’s Theorem: On 𝑝 processors, a parallel computation can be
performed in time

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞.

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors 𝑝 = O 𝑇1 𝑇∞ , it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Prefix Sums

• The following works for any associative binary operator ⨁:

associativity: 𝑎⨁𝑏 ⨁𝑐 = 𝑎⨁ 𝑏⨁𝑐

All-Prefix-Sums: Given a sequence of 𝑛 values 𝑎1, … , 𝑎𝑛, the all-
prefix-sums operation w.r.t. ⨁ returns the sequence of prefix sums:

𝑠1, 𝑠2, … , 𝑠𝑛 = 𝑎1, 𝑎1⨁𝑎2, 𝑎1⨁𝑎2⨁𝑎3, … , 𝑎1⨁⋯⨁𝑎𝑛

• Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: 𝑎1, … , 𝑎8 = 3, 1, 7, 0, 4, 1, 6, 3

𝑠1, … , 𝑠8 =

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Computing Prefix Sums

Theorem: Given a sequence 𝑎1, … , 𝑎𝑛 of 𝑛 values, all prefix sums
𝑠𝑖 = 𝑎1⨁⋯⨁𝑎𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) can be computed in time 𝑂(log 𝑛)
using 𝑂 𝑛 log 𝑛 processors on an EREW PRAM.

Proof:

• Computing the sums of all sub-trees can be done in parallel in
time 𝑂 log 𝑛 using 𝑂 𝑛 total operations.

• The same is true for the top-down step to compute the 𝑟(𝑣)

• The theorem then follows from Brent’s theorem:

𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂 log 𝑛 ⟹ 𝑇𝑝 < 𝑇∞ +
𝑇1
𝑝

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Parallel Quicksort

• Key challenge: parallelize partition

• How can we do this in parallel?

• For now, let’s just care about the values ≤ pivot

• What are their new positions

 𝟓 𝟓 𝟏𝟒 𝟏𝟒 𝟏𝟖 𝟏𝟖 𝟖 𝟖 𝟏𝟗 𝟏𝟗 𝟐𝟏 𝟐𝟏 𝟑 𝟑 𝟏 𝟏 𝟐𝟓 𝟐𝟓 𝟏𝟕 𝟏𝟕 𝟏𝟏 𝟏𝟏 𝟒 𝟒 𝟐𝟎 𝟐𝟎 𝟏𝟎 𝟏𝟎 𝟐𝟔 𝟐𝟔 𝟐 𝟐 𝟗 𝟗 𝟏𝟑 𝟏𝟑 𝟐𝟑 𝟐𝟑 𝟏𝟔 𝟏𝟔

pivot

 𝟓 𝟓 𝟏𝟒 𝟏𝟒 𝟖 𝟖 𝟑 𝟑 𝟏 𝟏 𝟏𝟏 𝟏𝟏 𝟒 𝟒 𝟏𝟎 𝟏𝟎 𝟐 𝟐 𝟗 𝟗 𝟏𝟑 𝟏𝟑 𝟏𝟔 𝟏𝟔 𝟏𝟖 𝟏𝟖 𝟏𝟗 𝟏𝟗 𝟐𝟏 𝟐𝟏 𝟐𝟓 𝟐𝟓 𝟏𝟕 𝟏𝟕 𝟐𝟎 𝟐𝟎 𝟐𝟔 𝟐𝟔 𝟐𝟑 𝟐𝟑

partition

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Using Prefix Sums

• Goal: Determine positions of values ≤ pivot after partition

 𝟓 𝟓 𝟏𝟒 𝟏𝟒 𝟏𝟖 𝟏𝟖 𝟖 𝟖 𝟏𝟗 𝟏𝟗 𝟐𝟏 𝟐𝟏 𝟑 𝟑 𝟏 𝟏 𝟐𝟓 𝟐𝟓 𝟏𝟕 𝟏𝟕 𝟏𝟏 𝟏𝟏 𝟒 𝟒 𝟐𝟎 𝟐𝟎 𝟏𝟎 𝟏𝟎 𝟐𝟔 𝟐𝟔 𝟐 𝟐 𝟗 𝟗 𝟏𝟑 𝟏𝟑 𝟐𝟑 𝟐𝟑 𝟏𝟔 𝟏𝟔

pivot

 𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟏 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟏

 𝟏 𝟏 𝟐 𝟐 𝟐 𝟐 𝟑 𝟑 𝟑 𝟑 𝟑 𝟑 𝟒 𝟒 𝟓 𝟓 𝟓 𝟓 𝟓 𝟓 𝟔 𝟔 𝟕 𝟕 𝟕 𝟕 𝟖 𝟖 𝟖 𝟖 𝟗 𝟗 𝟏𝟎 𝟏𝟎 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟐 𝟏𝟐

 𝟓 𝟓 𝟏𝟒 𝟏𝟒 𝟖 𝟖 𝟑 𝟑 𝟏 𝟏 𝟏𝟏 𝟏𝟏 𝟒 𝟒 𝟏𝟎 𝟏𝟎 𝟐 𝟐 𝟗 𝟗 𝟏𝟑 𝟏𝟑 𝟏𝟔 𝟏𝟔 𝟏𝟖 𝟏𝟖 𝟏𝟗 𝟏𝟗 𝟐𝟏 𝟐𝟏 𝟐𝟓 𝟐𝟓 𝟏𝟕 𝟏𝟕 𝟐𝟎 𝟐𝟎 𝟐𝟔 𝟐𝟔 𝟐𝟑 𝟐𝟑

prefix sums

partition

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Partition Using Prefix Sums

• The positions of the entries > pivot can be determined in the
same way

• Prefix sums: 𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂(log 𝑛)

• Remaining computations: 𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂(1)

• Overall: 𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂(log 𝑛)

Lemma: The partitioning of quicksort can be carried out in

parallel in time 𝑂 log 𝑛 using 𝑂
𝑛

log 𝑛
 processors.

Proof:

• By Brent’s theorem: 𝑇𝑝 ≤
𝑇1

𝑝
+ 𝑇∞

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Applying to Quicksort

Theorem: On an EREW PRAM, using 𝑝 processors, randomized
quicksort can be executed in time 𝑇𝑝 (in expectation and with

high probability), where

𝑇𝑝 = 𝑂
𝑛 log 𝑛

𝑝
+ log2 𝑛 .

Proof:

Remark:

• We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all 𝑝 = 𝑂 𝑛 log 𝑛 .

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Other Applications of Prefix Sums

• Prefix sums are a very powerful primitive to design parallel
algorithms.
– Particularly also by using other operators than +

Example Applications:

• Lexical comparison of strings

• Add multi-precision numbers

• Evaluate polynomials

• Solve recurrences

• Radix sort / quick sort

• Search for regular expressions

• Implement some tree operations

• …

