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Brent’s Theorem 

Brent’s Theorem: On 𝑝 processors, a parallel computation can be 
performed in time 

𝑻𝒑 ≤
𝑻𝟏 − 𝑻∞

𝒑
+ 𝑻∞. 

 

Corollary: Greedy is a 2-approximation algorithm for scheduling. 

 

 

 

 

 

Corollary: As long as the number of processors 𝑝 = O 𝑇1 𝑇∞ , it is 
possible to achieve a linear speed-up. 
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Prefix Sums 

• The following works for any associative binary operator ⨁: 
 

associativity:        𝑎⨁𝑏 ⨁𝑐 = 𝑎⨁ 𝑏⨁𝑐  
 

All-Prefix-Sums: Given a sequence of 𝑛 values 𝑎1, … , 𝑎𝑛, the all-
prefix-sums operation w.r.t. ⨁ returns the sequence of prefix sums: 
 

𝑠1, 𝑠2, … , 𝑠𝑛 = 𝑎1, 𝑎1⨁𝑎2, 𝑎1⨁𝑎2⨁𝑎3, … , 𝑎1⨁⋯⨁𝑎𝑛 
 

• Can be computed efficiently in parallel and turns out to be an 
important building block for designing parallel algorithms 

 

Example: Operator: +, input: 𝑎1, … , 𝑎8 = 3, 1, 7, 0, 4, 1, 6, 3 
 
𝑠1, … , 𝑠8 =  
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Computing Prefix Sums 

Theorem: Given a sequence 𝑎1, … , 𝑎𝑛 of 𝑛 values, all prefix sums 
𝑠𝑖 = 𝑎1⨁⋯⨁𝑎𝑖  (for 1 ≤ 𝑖 ≤ 𝑛) can be computed in time 𝑂(log 𝑛) 
using 𝑂 𝑛 log 𝑛  processors on an EREW PRAM. 
 

Proof: 

• Computing the sums of all sub-trees can be done in parallel in 
time 𝑂 log 𝑛  using 𝑂 𝑛  total operations. 

• The same is true for the top-down step to compute the 𝑟(𝑣) 

• The theorem then follows from Brent’s theorem: 
 

𝑇1 = 𝑂 𝑛 , 𝑇∞ = 𝑂 log 𝑛      ⟹     𝑇𝑝 < 𝑇∞ +
𝑇1
𝑝

 

 

Remark: This can be adapted to other parallel models and to 
different ways of storing the value (e.g., array or list) 
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Parallel Quicksort 

• Key challenge: parallelize partition 

 

 

 

 

 

 

 

 

• How can we do this in parallel? 

• For now, let’s just care about the values ≤ pivot 

• What are their new positions 

 

 

 𝟓  𝟓  𝟏𝟒  𝟏𝟒  𝟏𝟖  𝟏𝟖  𝟖  𝟖  𝟏𝟗  𝟏𝟗  𝟐𝟏  𝟐𝟏  𝟑  𝟑  𝟏  𝟏  𝟐𝟓  𝟐𝟓  𝟏𝟕  𝟏𝟕  𝟏𝟏  𝟏𝟏  𝟒  𝟒  𝟐𝟎  𝟐𝟎  𝟏𝟎  𝟏𝟎  𝟐𝟔  𝟐𝟔  𝟐  𝟐  𝟗  𝟗  𝟏𝟑  𝟏𝟑  𝟐𝟑  𝟐𝟑  𝟏𝟔  𝟏𝟔 

pivot 

 𝟓  𝟓  𝟏𝟒  𝟏𝟒  𝟖  𝟖  𝟑  𝟑  𝟏  𝟏  𝟏𝟏  𝟏𝟏  𝟒  𝟒  𝟏𝟎  𝟏𝟎  𝟐  𝟐  𝟗  𝟗  𝟏𝟑  𝟏𝟑  𝟏𝟔  𝟏𝟔  𝟏𝟖  𝟏𝟖  𝟏𝟗  𝟏𝟗  𝟐𝟏  𝟐𝟏  𝟐𝟓  𝟐𝟓  𝟏𝟕  𝟏𝟕  𝟐𝟎  𝟐𝟎  𝟐𝟔  𝟐𝟔  𝟐𝟑  𝟐𝟑 

partition 
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Using Prefix Sums 

• Goal: Determine positions of values ≤ pivot after partition 

 𝟓  𝟓  𝟏𝟒  𝟏𝟒  𝟏𝟖  𝟏𝟖  𝟖  𝟖  𝟏𝟗  𝟏𝟗  𝟐𝟏  𝟐𝟏  𝟑  𝟑  𝟏  𝟏  𝟐𝟓  𝟐𝟓  𝟏𝟕  𝟏𝟕  𝟏𝟏  𝟏𝟏  𝟒  𝟒  𝟐𝟎  𝟐𝟎  𝟏𝟎  𝟏𝟎  𝟐𝟔  𝟐𝟔  𝟐  𝟐  𝟗  𝟗  𝟏𝟑  𝟏𝟑  𝟐𝟑  𝟐𝟑  𝟏𝟔  𝟏𝟔 

pivot 

 𝟏  𝟏  𝟏  𝟏  𝟎  𝟎  𝟏  𝟏  𝟎  𝟎  𝟎  𝟎  𝟏  𝟏  𝟏  𝟏  𝟎  𝟎  𝟎  𝟎  𝟏  𝟏  𝟏  𝟏  𝟎  𝟎  𝟏  𝟏  𝟎  𝟎  𝟏  𝟏  𝟏  𝟏  𝟏  𝟏  𝟎  𝟎  𝟏  𝟏 

 𝟏  𝟏  𝟐  𝟐  𝟐  𝟐  𝟑  𝟑  𝟑  𝟑  𝟑  𝟑  𝟒  𝟒  𝟓  𝟓  𝟓  𝟓  𝟓  𝟓  𝟔  𝟔  𝟕  𝟕  𝟕  𝟕  𝟖  𝟖  𝟖  𝟖  𝟗  𝟗  𝟏𝟎  𝟏𝟎  𝟏𝟏  𝟏𝟏  𝟏𝟏  𝟏𝟏  𝟏𝟐  𝟏𝟐 

 𝟓  𝟓  𝟏𝟒  𝟏𝟒  𝟖  𝟖  𝟑  𝟑  𝟏  𝟏  𝟏𝟏  𝟏𝟏  𝟒  𝟒  𝟏𝟎  𝟏𝟎  𝟐  𝟐  𝟗  𝟗  𝟏𝟑  𝟏𝟑  𝟏𝟔  𝟏𝟔  𝟏𝟖  𝟏𝟖  𝟏𝟗  𝟏𝟗  𝟐𝟏  𝟐𝟏  𝟐𝟓  𝟐𝟓  𝟏𝟕  𝟏𝟕  𝟐𝟎  𝟐𝟎  𝟐𝟔  𝟐𝟔  𝟐𝟑  𝟐𝟑 

prefix sums 

partition 
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Partition Using Prefix Sums 

• The positions of the entries > pivot can be determined in the 
same way 
 

• Prefix sums: 𝑇1 = 𝑂 𝑛 ,     𝑇∞ = 𝑂(log 𝑛) 
 

• Remaining computations: 𝑇1 = 𝑂 𝑛 ,    𝑇∞ = 𝑂(1) 
 

• Overall: 𝑇1 = 𝑂 𝑛 ,   𝑇∞ = 𝑂(log 𝑛) 

 

Lemma: The partitioning of quicksort can be carried out in 

parallel in time 𝑂 log 𝑛  using 𝑂
𝑛

log 𝑛
 processors. 

Proof: 

• By Brent’s theorem: 𝑇𝑝 ≤
𝑇1

𝑝
+ 𝑇∞ 
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Applying to Quicksort 

Theorem: On an EREW PRAM, using 𝑝 processors, randomized 
quicksort can be executed in time 𝑇𝑝 (in expectation and with 

high probability), where 
 

𝑇𝑝 = 𝑂
𝑛 log 𝑛

𝑝
+ log2 𝑛 . 

Proof: 

 

 

 

 

Remark: 

• We get optimal (linear) speed-up w.r.t. to the sequential 
algorithm for all 𝑝 = 𝑂 𝑛 log 𝑛 . 
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Other Applications of Prefix Sums 

• Prefix sums are a very powerful primitive to design parallel 
algorithms. 
– Particularly also by using other operators than + 

 

Example Applications: 

• Lexical comparison of strings 

• Add multi-precision numbers 

• Evaluate polynomials 

• Solve recurrences 

• Radix sort / quick sort 

• Search for regular expressions 

• Implement some tree operations 

• … 


