Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI

FREIBURG

Brent’s Theorem

UNI
|

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be

performed in time
T, =5
< 34T,

- 4

T

p

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors p = O(T, /Tw), it is
possible to achieve a linear speed-up.

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Prefix Sums

UNI
|

FREIBURG

* The following works for any associative binary operator @:

associativity: (a®b)Dc = aP(bDc)

All-Prefix-Sums: Given a sequence of n values a4, ..., a,, the all-
prefix-sums operation w.r.t._@ returns the sequence of prefix sums:

$1,S2, -, Sp = a1, 41Da;y,a:Da,Das, ...,a,D - Day,
—_———

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Computing Prefix Sums

UNI
FREIBURG

Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
S; = a1 - Da; (for1 < i < n)can be computed in time O(logn)
using O (n/logn) processors on an EREW PRAM.

—_—

Proof:
* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.
* The same is true for the top-down step to compute the r(v)
* The theorem then follows from Brent’s theorem:
T; = 0(n), To =0(ogn) = T,<Tex+—

- —— 7 p—7

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Parallel Quicksort

UNI
|

FREIBURG

* Key challenge: parallelize partition
8 (19/21| 3
31114

* How can we do this in parallel?

pivot

5(14/18

1(25(17|11| 4 |20|/10(26| 2 | 9 |[13|23|16

partition
10| 2

9 |113|{16/18|19|21|25(|17(20|26|23

* For now, let’s just care about the values < pivot
 What are their new positions

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Using Prefix Sums ElcW

UNI
|

FREIBURG

* Goal: Determine positions of values < pivot after partition .

\

T

5

pivot

/

14

18

19

21

3|1|25(17|11| 4 |20/10(26| 2 | 9 |13|23|16

o0 (

=)

S| = [e—$00

1110

M| = | U1

—\

.r/":y

O

N

0/1/1|0]1
O Gemnmd
516|778

4|55

N
\

——

@ partition

14

11

4 (10| 2 | 9 (13|/16/18/19|21(25|17|20(26|23

;=—%¢ D

Algorithm Theory, WS 2015/16

Fabian Kuhn 6

Partition Using Prefix Sums

UNI
|

FREIBURG

* The positions of the entries > pivot can be determined in the
same way

e Prefixsums:T; = 0(n), T, = 0(logn)

— JO(ﬁ; “)
* Remaining computations: T; = 0(n), T, = 0(1)
« Overall:T; = 0(n), T, = 0(logn) —_ N~
== —_— \? = T\; + 1w
Lemma: The partitioning of quicksort can be carried out in

parallel in time O(logn) using O (@) processors.

Proof:

By Brent’s theorem: T, < % + T

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Applying to Quicksort

UNI
FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with
high probability), where =

nlogn
Tp=0(5 +10g2n).

p
Proof:
’\bu w«k %\2
O(ﬂ '-h: N.OA sAou ﬁ% T @(,693 “) - :‘t‘{c Q"»\’JS
— — g zb\)
\ZGT(‘*Z’B) @%m"'g -W\w T); sy
Remark:

 We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

]
Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Other Applications of Prefix Sums

UNI
|

FREIBURG

* Prefix sums are a very powerful primitive to design parallel
algorithms.
— Particularly also by using other operators than +

Example Applications:

e Lexical comparison of strings

e Add multi-precision numbers

* Evaluate polynomials

* Solve recurrences

* Radix sort / quick sort

* Search for regular expressions

* Implement some tree operations

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

