IIF

Chapter 10
 Parallel Algorithms

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$
T_{p} \leq \frac{T_{1}}{p}+T_{\infty} .
$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p=0\left(T_{1} / T_{\infty}\right)$, it is possible to achieve a linear speed-up.

Prefix Sums

- The following works for any associative binary operator \oplus : associativity: $\quad(a \oplus b) \oplus c=a \oplus(b \oplus c)$

All-Prefix-Sums: Given a sequence of n values $\underline{a}_{1}, \ldots, a_{n}$, the all-prefix-sums operation w.r.t. \oplus returns the sequence of prefix sums:

$$
\underline{\underline{s_{1}, s_{2}, \ldots, s_{n}}=a_{1}, a_{1} \oplus a_{2}}, a_{1} \oplus a_{2} \oplus a_{3}, \ldots, a_{1} \oplus \cdots \oplus a_{n}
$$

- Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: + , input: $a_{1}, \ldots, a_{8}=3,1,7,0,4,1,6,3$
$s_{1}, \ldots, s_{8}=$

Computing Prefix Sums

Theorem: Given a sequence a_{1}, \ldots, a_{n} of n values, all prefix sums $s_{i}=a_{1} \oplus \cdots \oplus a_{i}$ (for $\left.1 \leq i \leq n\right)$ can be computed in time $\underline{\underline{O(\log n)}}$ using $O(n / \log n)$ processors on an EREW PRAM.

Proof:

- Computing the sums of all sub-trees can be done in parallel in time $O(\log n)$ using $O(n)$ total operations.
- The same is true for the top-down step to compute the $r(v)$
- The theorem then follows from Brent's theorem:

$$
\underline{\underline{T_{1}=O(n)}}, \quad \underline{\underline{T_{\infty}=O(\log n)}} \Rightarrow \quad \underline{T_{p}<T_{\infty}+\frac{T_{1}}{p}<\chi^{n}}
$$

Remark: This can be adapted to other parallel models and to different ways of storing the value (e.g., array or list)

Parallel Quicksort

- Key challenge: parallelize partition

- How can we do this in parallel?
- For now, let's just care about the values \leq pivot
- What are their new positions

Using Prefix Sums
 EREW

- Goal: Determine positions of values \leq pivot after partition ${ }_{\text {pivot }}$

Partition Using Prefix Sums

- The positions of the entries > pivot can be determined in the same way
- Prefix sums: $\underline{T_{1}=O(n)}, \quad \underline{T_{\infty}=O(\log n)}$

$$
d O\left(\log _{n} n\right.
$$

- Remaining computations: $T_{1}=O(n), \quad T_{\infty}=O(1)$
- Overall: $\underline{\underline{T_{1}=O(n)}}, \underline{T_{\infty}=O(\log n)} \quad T_{p} \leqslant \frac{T_{1}}{p}+T_{\infty}$

Lemma: The partitioning of quicksort can be carried out in parallel in time $O(\log n)$ using $O\left(\frac{n}{\log n}\right)$ processors.

Proof:

- By Brent's theorem: $T_{p} \leq \frac{T_{1}}{p}+T_{\infty}$

Applying to Quicksort
Theorem: On an EREW PRAM, using p processors, randomized quicksort can be executed in time T_{p} (in expectation and with high probability), where

$$
T_{p}=O\left(\frac{n \log n}{p}+\log ^{2} n\right)
$$

Proof:
total work:
span:

$$
\begin{array}{rlrl}
\text { Total work: levels } \\
T_{1}=O(n) \cdot \text { \#recussion deptex } & & & T_{\infty}=O(\log n) \cdot \text { \#rec. levels } \\
& =O(n \log n) \\
& =O\left(\log ^{2} n\right) \\
\Longrightarrow \text { Brent's thm: }
\end{array}
$$

Remark:

- We get optimal (linear) speed-up w.r.t. to the sequential algorithm for all $p=O(n / \log n)$.

Other Applications of Prefix Sums

- Prefix sums are a very powerful primitive to design parallel algorithms.
- Particularly also by using other operators than +

Example Applications:

- Lexical comparison of strings
- Add multi-precision numbers
- Evaluate polynomials
- Solve recurrences
- Radix sort / quick sort
- Search for regular expressions
- Implement some tree operations

