

Chapter 10 Parallel Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors $p = O(T_1/T_{\infty})$, it is possible to achieve a linear speed-up.

Algorithm Theory, WS 2015/16

Fabian Kuhn

Prefix Sums

The following works for any associative binary operator ⊕:
associativity: (a⊕b)⊕c = a⊕(b⊕c)

All-Prefix-Sums: Given a sequence of n values $\underline{a_1, \ldots, a_n}$, the allprefix-sums operation w.r.t. \bigoplus returns the sequence of prefix sums: $\underline{s_1, s_2, \ldots, s_n} = \underline{a_1, a_1 \oplus a_2, a_1 \oplus a_2 \oplus a_3, \ldots, a_1 \oplus \cdots \oplus a_n}$

• Can be computed efficiently in parallel and turns out to be an important building block for designing parallel algorithms

Example: Operator: +, input: $a_1, \dots, a_8 = 3, 1, 7, 0, 4, 1, 6, 3$

 $s_1, \dots, s_8 =$

FREIBURG

Theorem: Given a sequence $a_1, ..., a_n$ of n values, all prefix sums $s_i = a_1 \oplus \cdots \oplus a_i$ (for $1 \le i \le n$) can be computed in time $O(\log n)$ using $O(n/\log n)$ processors on an EREW PRAM.

Proof:

- Computing the sums of all sub-trees can be done in parallel in time O(log n) using O(n) total operations.
- The same is true for the top-down step to compute the r(v)
- The theorem then follows from Brent's theorem:

Remark: This can be adapted to other parallel models and to different ways of storing the value (e.g., array or list)

- M

- How can we do this in parallel?
- For now, let's just care about the values \leq pivot
- What are their new positions

Using Prefix Sums

EREW

Algorithm Theory, WS 2015/16

Partition Using Prefix Sums

- The positions of the entries > pivot can be determined in the same way
- **Prefix sums:** $\underline{T_1 = O(n)}$, $\underline{T_{\infty} = O(\log n)}$
- Remaining computations: $T_1 = O(n), \quad T_\infty = O(1)$
- Overall: $\underline{T_1 = O(n)}, \quad \underline{T_\infty = O(\log n)} \qquad \qquad \overline{T_p \le \frac{T_1}{p} + 1_{-\infty}}$

Lemma: The partitioning of quicksort can be carried out in parallel in time $O(\log n)$ using $O\left(\frac{n}{\log n}\right)$ processors. **Proof:**

• By Brent's theorem: $T_p \leq \frac{T_1}{p} + T_{\infty}$

Applying to Quicksort

Theorem: On an EREW PRAM, using p processors, randomized quicksort can be executed in time T_p (in expectation and with high probability), where

$$T_p = O\left(\frac{n\log n}{p} + \log^2 n\right).$$

Proof:

Remark:

• We get optimal (linear) speed-up w.r.t. to the sequential algorithm for all $p = O(n/\log n)$.

Algorithm Theory, WS 2015/16

Fabian Kuhn

Other Applications of Prefix Sums

- Prefix sums are a very powerful primitive to design parallel algorithms.
 - Particularly also by using other operators than +

Example Applications:

- Lexical comparison of strings
- Add multi-precision numbers
- Evaluate polynomials
- Solve recurrences
- Radix sort / quick sort
- Search for regular expressions
- Implement some tree operations

BURG