
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, O. Saukh, A. R. Molla November 11, 2015

Algorithm Theory, Winter Term 2015/16

Problem Set 5 - Sample Solution

Exercise 1: Amortized Analysis (2+4 points))

(a) Consider an extension of the augmented stack data structure from the lecture: In addition to
offering a multipop(k) operation, assume that the extended augmented stack also offers a mul-
tipush(k, L) operation which takes a parameter k ≥ 1 and a list L of k elements and it pushes
each of these elements on the stack. Assume that both operations multipop(k) and multipush(k,
L) require time Θ(k) to complete. In the lecture, we proved that for the simple augmented stack,
the amortized cost of all operations is O(1). Does this O(1) amortized cost bound for all stack
operations continue to hold for the extended version of the augmented stack? Explain your answer!

(b) Show how to implement a queue with two ordinary stacks so that the amortized cost of each
enqueue and dequeue operations is O(1). Explain your amortized analysis.

Solution

(a) Based on any standard implementation of stack operation we can assume that the actual cost for
any multipush(k, L) or multipop(k) operation is Θ(k) and for any push() or pop() operation is
OΘ(1).

For the sake of contradiction let us assume that the amortized cost of any of the four above
operations in any sequence of these operations is constant and is bounded by some positive integer
c. Let the actual cost for any operation oi be ti and the amortized cost be ai. Hence, for any
sequence of n operations we have

n∑
i=1

ai ≤ cn. (1)

Consider a sequence of n operations o1, o2, . . . , on such that any odd operation is multipush
(
(c +

1), L
)

and any even operation is multipop(c + 1). Then the total actual cost for this sequence of
operations is

T =
n∑

i=1

ti = (c + 1)n, (2)

From (1) and (2), the main property of the amortized cost which is
∑n

i=1 ti ≤
∑n

i=1 ai does not
hold. Therefore, our assumption on the amortized cost of these operations is wrong.

(b) It is required to model queue data structure with two stacks, such that amortized cost of operations
is O(1). Let us assume that we have two stacks S1 and S2. The simplest operation is enqueue(x),
we model it with just simple call S1.push(x), so we always put a new element on top of the first
stack. Now, if we want to dequeue() and element, we face a problem, that the element which we
need to return is on the bottom of the stack and there is no simple way to get it (if there are

1



more than one element in the stack). To implement the dequeue() function, it is proposed to do
the following. We put all elements that are currently in the S1 stack (let it be k) into S2 buy
calling the S2.push(S1.pop()) k times, if S2 is empty. Notice that the order of the elements in the
S2 stack is now the same as should have been in the queue, so after this costly operation time,
we can model dequeue as a simple S2.pop() for the next k times and this operation is very cheap.
Summing up, the idea is rather simple:

• enqueue(·) : always push a new element on top of S1.

• dequeue() : always pop an element from S2.

• if S2 is empty call S2.push(S1.pop()) until all elements of S1 are in S2. Return S2.pop().

Let us now take a closer look to the amortized cost of these operations. We will use accounting
method of analysis. The real costs of operations that we need to pay are the following: putting
an element into queue (on top of S1) costs 1; if second stack is not empty getting an element costs
1; if S2 is empty and S1 has k elements the cost is 2k + 1, . Consider the following amortized cost
of operations:

• enqueue(·) : amortized cost is 3, from which we put 2 to account and 1 is the real cost.

• dequeue(·) : amortized cost is 3. If stack S2 is not empty, we delete the top element (real cost
1) and put 2 to the account. If stack S2 is empty, we copy all elements (assume k) from S1 to
S2 and take for each copied element 2 from the account (1 for each S1.pop() and S2.push(),
so 2k for copying) and also, we need to call S2.pop() one time to return the required element.
There real cost is 2k + 1. Summing this up, we get amortized cost 3 if S2 is not empty and
we get 3 = 2k + 1− 2k + 2 in case if S2 is empty.

Notice, that the number of elements that we move from S1 to S2 for any sequence of operations
is always not more than number of enqueue(·) operation calls and so, for any execution: since

n∑
i=0

ti ≤
n∑

i=0

ai = 3n

Exercise 2: Fibonacci Heaps (0.5+2.5+3 points)

(a) Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How
does the given Fibonacci heap look after a decrease-key(v, 2) operation and how does it look after
a subsequent delete-min operation?

5

8

9v

12 18

14 17 11 20

1

25

31

3

6 10 7

19

(b) Fibonacci heaps are only efficient in an amortized sense. The time to execute a single, individual
operation can be large. Show that in the worst case, both the delete-min and the decrease-key
operations can require time Ω(n) (for any heap size n).

Hint: Describe an execution in which there is a delete-min operation that requires linear time and
describe an execution in which there is a decrease-key operation that requires linear time.

2



Solution

a) The decrease-key operation cuts the node – together with its subtree – off the tree and inserts it
as a root to the root list, decreases the key and possibly updates the pointer to the minimum. The
latter is not the case here. But then we are not done yet as its parent just lost a child and has to
be marked. The parent of v however is already marked, which causes it to be cut as well, together
with its remaining (empty) subtree, and being inserted into the root list, again checking whether the
pointer to the minimum has to be updated. This goes on recursively until we reach the root or an
unmarked node (in our case the node with key 5). Note that we can unmark any root1: if the root
gets added to another tree, it loses the mark. If the root loses another child, we do not need to cut it
off, as it is already in the root list.
Thus, the resulting heap looks like this:

5

14 17 11 20

1

25

31

3

6 10 7

19 2

12 18

8

If we delete the minimum, the node with key 1 gets removed and all its subtrees are inserted into the
root list (we can unmark the roots of those subtrees, if we want).

5

14 17 11 20

25

31

3

6 10 7

19 2

12 18

8

Following up is a consolidate, that merges trees of same rank. 8 merges with 19 and together they
are a tree of rank 1. Which then merges with the tree rooted at 25 and is now a tree of rank 2. Like
the one rooted at node v, now having the key 2. Let us merge those two trees, too. The current heap
looks like this:

5

14 17 11 20

3

6 10 7

2

12 18 8

19 25

31

We have two trees of rank 3 and merge them, getting a tree of rank 4 rooted at v, which we then
merge with the tree rooted at 5:

1The unmarking of a node in the root list has no effect on any future operation. Furthermore, the proof of the
amortized costs works as it is because the potential function only considers marked nodes which are not in the root-list.

3



2

5

14 17 11 20

3

6 10 7

12 18 8

19 25

31

b) A costly delete-min :
First n elements are added to the heap, which causes them all to be roots in the root list. Deleting
the minimum causes a consolidate call, which combines the remaining n− 1 elements, which need at
least n− 2 merge operations, i.e., it costs Ω(n) time.
A costly decrease-key operation: (more difficult)
We construct a degenerated tree. Assume we already have a tree Tn in which the root rn has two
children rn−1 and cn, where cn is unmarked and rn−1 is marked and has a single child rn−2 that is
also marked and has a single child rn−3 and so on, until we reach a (marked or unmarked) leaf r1. In
other words, Tn consists of a line of marked nodes, plus the root and one further unmarked child of
the root. We give the root rn some key kn.
We now add another 5 nodes to the heap and delete the minimum of them, causing a consolidate.
In more detail let us add a node rn+1 with key kn+1 ∈ (0, kn), one with key 0 and 3 with keys
k′ ∈ (kn+1, kn). When we delete the minimum, first both pairs of singletons are combined to two trees
of rank 1, which are combined again to one binomial tree of rank 2, with the node rn+1 as the root
and we name its childless child cn+1 (confer the picture for the current state).

rn

rn−1

rn−2

?

r1

cn

rn+1

?

?

cn+1

Since also Tn has rank 2 we now combine it with the new tree and rn+1 becomes the new root. We
now decrease the key of cn to 0 as well as the keys of the two unnamed nodes and delete the minimum
after each such operation, as to cause no further effect from consolidate. Decreasing the key of cn,
however, will now mark its parent rn, as it is not a root anymore. Thus the remaining heap is of
exactly the same shape as Tn, except that its depth did increase by one: a Tn+1.
Can we create such trees? We sure can by starting with an empty heap, adding 5 nodes, deleting one,
resulting in a tree of the following form:

4



We cut off the lowest leaf and now have a T1. The rest follows via induction.
Obviously, a decrease-key operation on r1 will cause a cascade of Ω(n) cuts if applied to a heap
consisting of such a Tn.

5


