
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, O. Saukh, A. R. Molla December 22, 2015

Algorithm Theory, Winter Term 2015/16

Problem Set 8 - Sample Solution

Exercise 1: Rectangular City (4 points)

Given a city map that looks like a rectangular grid. In this city in some points that are marked,
people have built their houses. Since people in the city do not like other citizens, they want to build
individual roads from their houses to the border of the city in such a way, that they do not cross in
any point with the roads of others (so that they do not have to see other people driving). Roads can
only go along the edges of the rectangular grid.
Design an algorithm which finds a solution (how to design such roads for the city) for a given grid
with houses depicted on it, or indicates that it is not possible to construct such road network. Your
algorithm should run in polynomial time.
Remark 1: If you use any flow network, describe it explicitly.
Remark 2: There is a solution in the left hand side example but no solution in the right hand side
example.

Solution:

The problem is reduced to a max flow problem with vertex disjoint paths (note that any two vertex
disjoint paths are also edge disjoint).
Let A “ ta1, . . . , aku be the houses and B “ tb1, . . . , blu the hubs that lead out of the city on the rim
of the graph. Construct a flow network as follows:

1) Start with the grid as a graph, where each grid line is substituted with two directed edges.

2) Every edge in the flow network will have capacity 1.

3) Add a source s and a sink t.

4) Connect the source with every house node, that is, introduce an edge ps, aiq for i “ 1, . . . , k.

5) Furthermore connect every hub with the sink t, that is, introduce an edge pbi, tq for i “ 1, . . . , l.

1

Now a maximum flow of value k (if it exists) in the above network leads a solution to the given
problem neglecting that street paths are not allowed to cross. We overcome this by ensuring that the
flow through every node is at most 1 (vertex disjoint paths).
This can be achieved by substituting each node v with two nodes vin and vout and redirecting its
edges. Every edge into v is substituted with a corresponding edge into vin and every edge leaving v
is substituted with an edge from vout. Furthermore we add an edge pvin, voutq (e.g., see the following
example).

v vin vout

The total capacity of all edges leaving s is k, so the value of a max flow will be smaller or equal to
k. If there is a max flow with value k there will be vertex disjoint (and path disjoint) paths from the
houses to the hubs.
The max flow problem can be solved in polynomial time.

Exercise 2: Network Flows (2+3 points)

(a) In this problem, we are given a flow network with unit-capacity edges: It consists of a directed
graph G “ pV,Eq, a source node s P V , a sink node t P V , and capacity ce “ 1 for every e P E.
We are also given a positive integer parameter k.

The goal is to delete k edges so as to reduce the maximum s-t flow in G by as much as possible.
In other words, you should find a set of edges F Ď E so that |F | “ k and the maximum s-t-flow
in G1 “ pV,EzF q is as small as possible.

Give a polynomial-time algorithm to solve this problem.

(b) Suppose you are given a directed graph G “ pV,Eq, with a positive integer capacity ce on each
edge e, a source node s P V , and a sink node t P V . You are also given a maximum s-t flow f in
G, defined by a flow value fe on each edge e. The flow f is acyclic: there is no directed cycle in
G on which all edges carry positive flow. The flow f is also integer-valued.

Now suppose, we pick a specific edge e˚ P E and reduce its capacity by 1 unit. Show how to find
a maximum flow in the resulting capacitated graph in time Opm` nq, where m is the number of
edges in G and n is the number of nodes.

Solution

a) Let g be the value of maximum flow of network G. First note that removing k edges can never
result in a flow less than g ´ k, as edge has capacity 1. p1q

According to the max-flow min-cut theorem, there is an s´ t-cut with g edges. If g is smaller or equal
to k, then we simply remove all edges in that s´t-cut, disconnecting s and t, decreasing the maximum
flow to 0. If g ą k, by removing k edges from the min-cut, we create a cut with value g ´ k. p2q

From p1q and p2q, we can claim that the min-cut in the new graph has the value of g1 “ maxt0, g´ku.
Then based on max-flow min-cut theorem, the max-flow of the new graph is g1.

In both cases whether max-flow equals zero or g´ k, the max-flow cannot be decreased any more
which satisfies the algorithm requirement. The algorithm has polynomial running time, since we need
polynomial time for computing the minimal s´ t-cut, and linear in k time to remove the k edges.

2

Remark: In case the capacity of all edges are not equal to 1, removing the k edges from the min-cut
does not guarantee to have the minimum possible max-flow.

b) Note first that the maximum flow in the new graph is either the same or it decreases at most by
one.

If the flow value on edge e˚ “ pu, vq was smaller than the capacity before the change, the maximum
flow does not change. Thus we assume that fe˚ “ ce˚ in the original graph. By reducing ce˚ , the flow
becomes invalid. To make it a valid flow, we first reduce the flow on e˚ by one. This change creates
an imbalance between the in-flows and out-flows at u and v respectively. To fix that we look in the
residual graph and try to find a path from t to v and also a path from u to s, which can be done in
Opm` nq. Then we decrease the flow on all edges of the two paths from t to v and u to s. This way
we resolved the imbalance of in-flow and out-flow at u and v. However the max-flow in the graph is
decreased by one.

Now we can check whether the maximum flow in the graph can be the max-flow before decreasing
the capacity of edge e˚. For this purpose, we look for an augmenting path from s to t, which can have
a flow of at most one. If there exists such an augmenting path, then we increase the flow on the edges
of this path by one. Therefore, we have the same max-flow in the graph before decreasing the e˚’s
capacity. Otherwise, the new max-flow is less than the previous max-flow by one unit difference.

We can find these augmenting paths by Ford-Fulkerson algorithm which takes Opm` nq time.

Exercise 3: Forward-Only Paths (3 points)

A friend of you has written some very fast maximum flow code. Unfortunately it turns out that the
program doesn’t always compute a correct maximum flow. When inspecting the solution you realize
that your friend’s program implements a simplified variant of the Ford-Fulkerson algorithm. When
computing augmenting paths, the program only considers forward edges of the residual graph and it
does not consider backward edges at all. We have seen in the lecture that backward edges are necessary
to get a correct algorithm. However your friend claims that his algorithm (let’s call it the forward-
edge-only algorithm) always computes a solution that is within a constant factor of the optimal one.
That is, there is an absolute constant b ą 1 such that the forward-edge-only algorithm computes a
flow of value at least 1{b times the value of an optimal flow. Is your friend right? If yes, prove it,
otherwise show that the ratio of the maximum flow value and the flow computed by the forward-edge-
only algorithm can be arbitrarily large. Assume that the forward-edge-only implementation always
takes an arbitrary (possibly worst-case) augmenting path of only forward edges as long as such an
augmenting path exists. You can also assume that all edge capacities are positive integers.

Solution

s t

...

...

...

......... ...

...

s t

...

...

...

......... ...

...

Figure 1: Example of a network (left) and the path (right) to prove the claim is wrong.

Consider a network as shown in Figure 1 on the left. It consists of N ˆN ` 2 vertices - s and t are
source resp. sink vertices (shown in orange) and N ˆ N vertices that are connected only with the
direct vertical and horizontal neighbours. Let all edges have capacities 1 and have only left-to-right

3

and down-to-up directions. The maximum flow value in this network is N (simply use only left-to-right
edges when looking for an s ´ t-path). Now consider the red path shown in Figure 1 on the right,
possibly found by the forward-only algorithm.
If this path is considered first by the algorithm, it blocks all other paths that are considered by the
algorithm, as s and t are then disconnected in the “forward-only” residual graph and the returned
maximum flow is 1. Since N is arbitrary, the claim that the forward-only algorithm always finds a
constant approximation solution is wrong.

4

