
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, A. R. Molla, O. Saukh February 22, 2016

Algorithm Theory, Winter Term 2015/16

Problem Set 13 - Sample Solution

Exercise 1: LRU with Potential Function (5 points)

When studying online algorithm, the total (average) cost for serving a sequence of requests can often
be analyzed using amortized analysis. In the following, we will apply this to the paging problem and
you will analyze the competitive ratio of the LRU algorithm by using a potential function. Recall that
a potential function assigns a non-negative real value to each system state. In the context of online
algorithms, we think of running an optimal offline algorithm and an online algorithm side by side and
the system state is given by the combined states of both algorithms.
Consider the LRU paging algorithm, i.e., the online paging algorithm that always replaces the page
that has been used least recently. Let σ = (σ(1), σ(2), . . . , σ(m)) be an arbitrary request sequence
of pages. Let OPT be some optimal offline algorithm. You can assume that OPT evicts at most
one page in each step (e.g., think of OPT as the LFD algorithm). At any time t (i.e., after serving
requests σ(1), . . . , σ(t)), let SLRU(t) be the set of pages in LRU’s fast memory and let SOPT(t) be the
set of pages contained in OPT’s fast memory. We define S(t) := SLRU(t) \ SOPT(t). At each time t,
we further assign an integer weights w(p, t) from the range {1, . . . , k} to each page p ∈ SLRU(t) such
that for any two pages p, q ∈ SLRU(t), w(p, t) < w(q, t) iff the last request to p occurred before the
last request to q (i.e., the requests in SLRU are numbered from 1, . . . , k according to times of their
last occurrences). Recall that we use k to denote the size of the fast memory. We define the potential
function at time t to be

Φ(t) :=
∑

p∈S(t)

w(p, t).

We define the amortized cost aLRU(t) for serving request σ(t) as

aLRU(t) := cLRU(t) + Φ(t)− Φ(t− 1),

where cLRU(t) is the actual cost for serving request σ(t). Note that cLRU(t) = 1 if a page fault
for algorithm LRU occurs when serving request σ(t) and cLRU(t) = 0 otherwise. Similarly, we define
cOPT(t) to be the actual cost of the optimal offline algorithm for serving request σ(t). Again, cOPT(t) =
1 if OPT encounters a page fault in step t and cOPT(t) = 0 otherwise. In order to show that the
competitive ratio of the algorithm is at most k, you need to show that for every request σ(t),

aLRU(t) ≤ k · cOPT(t).

Solution

To show that the LRU algorithm is k-competitive, it is required to show that, for all t

cLRU(t) + Φ(t)− Φ(t− 1) ≤ k · cOPT(t) (1)

Let σ = (σ(1), σ(2), . . . , σ(m)) be an arbitrary sequence of requests. Consider an arbitrary request
σ(t) = p and W.l.o.g. assume that OPT serves the request earlier than LRU algorithm.

1



In case both algorithms OPT and LRU have no page fault on σ(t) = p, inequality (1) holds. Potential
function can not increase (thus, it can decrease) and costs of both operations are zero.
If OPT does not have a page fault on σ(t) = p, then cOPT = 0 and the potential function does not
change. If OPT does have a page fault, cOPT = 1 and it needs to evict a page. If the page we evict
is not in the LRU’s fast memory, the potential function does not change. And if this page is in the
LRU’s fast memory, the set S gets an additional element and the potential function increases by at
most k.
Now, if we consider the LRU algorithm, if it does not have a page fault on σ(t), then cLRU = 0 and
potential function does not change. If LRU has a page fault, cLRU = 1 and we show that the value
of potential function decreases by at least 1. In fact, before LRU serves the σ(t) = p request, p is
only in OPT’s fast memory. By symmetry, there must be a page that is only in LRU’s fast memory,
so there has to exist a page q ∈ S. If q is evicted, then its weight is at least 1. Hence, potential
function decreases by at least 1. Otherwise, if another page gets evicted, and p is loaded into LRU’s
fast memory, p gets weight at most k and all other pages in the set S including q decrease their weights
by 1, so the potential function decreases by 1.
In case OPT and LRU have page fault and both need to evict a page, concluding the changes of cases
described above, the costs are 1 and potential function increases by at most k−1 (increases by at most
k due to the page fault of OPT and decreases by at least 1 due to page fault of LRU). Inequality (1)
still holds: 1 + k − 1 ≤ k · 1
To conclude, every time OPT has a fault, the potential function increases by at most k and every time
LRU has a fault, the potential function decreases by at least 1 and the inequality (1) always holds.

Exercise 2: (Generalized) Online Load Balancing (7 points)

In the lecture, a simple greedy algorithm was presented for an instance of the load balancing problem
where the speeds of all machines are assumed to be equal. This algorithm gives a factor 2 approximation
for the minimum makespan. As we have seen, it is not necessary to sort the jobs at the beginning of the
algorithm and we can always arbitrarily pick up a job and assign it to the machine with the smallest
load. Hence, the greedy algorithm can also be used as an online algorithm for the corresponding online
load balancing problem where the jobs arrive in an online fashion one by one. The algorithm then
achieves a competitive ratio of at most 2.

Now we are interested to find an online algorithm with constant competitive ratio for a generalization
of the above online load balancing problem where the speeds of machines are different; as before jobs
arrive one at a time in an online fashion. Assume that there are m machines and that for a given job
j, ti(j) is the processing time when running job j on machine i. For each 1 ≤ i ≤ m and 1 ≤ j ≤ n,
we assume that

ti(j) :=
w(j)

v(i)
,

where weight w(j) depends only on job j and speed v(i) depends only on the machine i.

Consider the following procedure we run after job j arrives: assume that the machines are indexed
according to increasing speed. Let ~T (j) := (T1(j), T2(j), . . . , Tm(j)) denote the loads of the m
machines after job j is assigned.
Hence, in Assign(~T, λ), job j is assigned to the slowest machine such that the load on this machine
is still below 2λ after the assignment.

(a) (4 points) Show that if λ ≥ T ∗ (where T ∗ is the optimal makespan), the procedure Assign always
succeeds (i.e., it never returns fail). As a consequence, if we knew the optimal makespan T ∗,
choosing λ = T ∗ would lead to a competitive ratio of 2.

Hint: By way of contradiction, assume that some job t cannot be assigned. Then show that there
must exist some job s (which was assigned earlier than t) which could have been assigned to a
slower machine.

2



Procedure Assign(~T (j − 1),λ)

/* λ is a given parameter.

Let S := {i : Ti(j − 1) + ti(j) ≤ 2λ};
if S = ∅ then

b := fail
else

k := min {i : i ∈ S};
Tk(j) := Tk(j − 1) + tk(j);
b := success

end

return (~T (j), b).

(b) (3 points) Using the result of (a), devise an online algorithm with O(1) competitive ratio (for the
case when the optimal makespan is not known). using Assign repeatedly (with changing λ) for
solving an instance of online load balancing where the speed of machines are not necessarily equal.

Hint: Use Assign repeatedly (with changing λ). Define phases such that at the beginning of the
first phase, λ is set to be equal to the load (processing time) generated by the first arrival job on
the fastest machine.

Remark: Note that if you could not solve (a), you can still try to solve (b).

Solution

(a) Assume that Assign(~T,λ), where T ∗ ≤ λ, fails on task j. Let r be the fastest machine whose
load does not exceed T ∗, so r = max{i |Ti(j − 1) ≤ T ∗}. If there is no such machine, set r = 0.
It is clear that r 6= m, otherwise, j could have been assigned to the fastest machine m, since
Tm(j − 1) + tm(j) ≤ T ∗ + T ∗ ≤ 2λ. Define S = {i | i > r}, the set of the overloaded machines.
Since r < m, S is not empty. Denote Ji and J∗i sets of jobs assigned to machine i by online and
offline algorithms, respectively. Since we are dealing with machines that have different speed, we
have:∑
i∈S,s∈Ji

tm(s) =
∑

i∈S,s∈Ji

tm(s)

ti(s)
ti(s) =

∑
i∈S

vi
vm

∑
s∈Ji

ti(s) >
∑
i∈S

vi
vm

T ∗ ≥
∑
i∈S

vi
vm

∑
s∈J∗i

ti(s) =
∑

i∈S,s∈J∗i

tm(s)

This implies that there exists a job s ∈ ∪i∈SJi, such that s /∈ ∪i∈SJ∗i , that is, there exists a job
assigned by the online algorithm to a machine i ∈ S, and assigned by the offline algorithm to a
slower machine i′ /∈ S.

By our assumption ti′(s) ≤ T ∗ ≤ λ. Since r ≥ i′, machine r is at least as fast as machine i′, and
thus tr(s) ≤ T ∗ ≤ λ. Since job s was assigned before job j, Tr(s− 1) ≤ Tr(j − 1) ≤ T ∗. But this
means that the online algorithm should have placed job s on r or a slower machine instead of i,
which is a contradiction. Hence, Assign never returns fail.

(b) Consider the following algorithm, that reuses the : Assign(~T, λ) algorithm. The algorithm
consists of phases, for each of those we define parameter λn and run the Assign(~T,λn) until it
returns fail. λi is defined in the following way: λ0 = 0. After we assign the first job to the fastest
machine at the beginning of the first phase, we set λ1 to be the load generated by the first job on
the fastest machine for this job. At the beginning of any phase h > 1 we set λh = 2 ·λh−1. During
any phase h > 1 jobs are assigned independently of the jobs assigned in the previous phases.
This means that each next phase starting with loads zero of the machines. Phase h ends, when
algorithm returns fail. Then we start the next phase with doubling the λ-value. This approach
can increase the competitive factor by at most 4 (a factor of 2 due to the load in all the rest of
the phases except the last one, and another factor 2 due to imprecise approximation of λ). This

3



is easy to see. We double λ for every phase until we find such a value that is at least as large
as the optimal makespan (we remember from the question (a), that if T ∗ ≤ λ the Assign(~T, λ)
does not fail), but this imprecise way of searching for the appropriate λ might give us the value
that is twice larger than we need. Another factor of 2 coming because the phases are considered
to be independent, so we do not take into account the loads of the machines from previous phases
while assigning the jobs in the current phase. If we sum up the loads that we got in each phase
we can see that for every machine the total load is at most twice as large as when we have not
treated the phases independently. Since the designed performance guarantee of Assign(~T,λ) is
2, we get competitive ration of 8, which is constant.

4


