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Divide-And-Conquer Principle
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e |mportant algorithm design method

e Examples from basic alg. & data structures class (Informatik 2):

Sorting: Mergesort, Quicksort
Binary search

e Further examples

Median

Compairing orders

Convex hull / Delaunay triangulation / Voronoi diagram
Closest pairs

Line intersections

Polynomial multiplication / FFT
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Example 1: Quicksort
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function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in §;
partition S into S, with elements = v,
and S, with elements > v
return | Quick(S,) v| Quick(S,)

end;
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Example 2: Mergesort
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Formulation of the D&C principle
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Divide-and-conquer method for solving a
problem instance of size n:

n < c: Solve the problem directly.

n > c: Divide the problem into k subproblems of
sizesn, ..., < n(k = 2).

Solve the k subproblems in the same way
(recursively).

Combine the partial solutions to generate a solution
for the original instance.
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Analysis
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Recurrence relation:

. T(n) : max. number of steps necessary for solving an instance of sizen

‘

a ifn<c
* T(n) = 9 T(n1)++T(nk) ifn>c
_ t cost for divide and combine

Special case: k =2,n, =n, ="/,

 cost for divide and combine: DC(n)
* T(1)=a
* T(n) =2T(n/2) + DC(n)
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Comparing Orders
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 Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, ...

e Collaborative filtering:
— Predict user taste by comparing rankings of different users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

* Core issue: Compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?
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Number of Inversions
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Formal problem:
* Given:array A = a4, a,, as, ..., a, | of distinct elements

* Objective: Compute number of inversions |

I=|{0<i<j<n|a >q))

* ExampleeA=[4 ,1,5,2,7,10, 6 ]

* Naive solution:
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Divide and conquer
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1. Divide array into 2 equal parts A, and A,
2. Recursively compute #inversions in A, and A,
3. Combine: add #pairs a; € Ay, a; € A, such that a; > a;

Ayp a; a; A,
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Combine Step
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Assume A, and A, are sorted

a; Ag 4 Ar
P At
L J

Idea:
* Maintain pointers i and j to go through the sorted parts

* While going through the sorted parts, we merge the two parts
into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

Invariant:

* At each pointin time, all inversions involving some element left
of i (in A;) or left of j (in A,.) are counted

— and all others still have to be counted...
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Combine Step

Assume A, and A, are sorted

a; Ag 4 Ar
P At
L J

* Pointers i and j, initially pointing to first elements of A, and A,

|f a; < Cljl
— a; is smallest among the remaining elements
— No inversion of a; and one of the remaining elements
— Do not change count

e If a; > Cljl

— a; is smallest among the remaining elements

— a; is smaller than all remaining elements in A,

— Add number of remaining elements in A, to count

* Increment point, pointing to smaller element
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Combine Step

* Need sub-sequences in sorted order
* Then, combine step is like merging in merge sort

* ldea: Solve sorting and #inversions at the same time!
1. Partition A into two equal parts A, and A,
2. Recursively compute #inversions and sort A, and A,

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in 4,
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Combine Step: Example

UNI

FREIBURG

* Assume A, and A, are sorted
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Number of Inversion: Analysis
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Recurrence relation:
T(n) <2-T(n/2) + cn, T(1) <a

Guess the solution by repeated substitution:
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Number of Inversions: Analysis
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Recurrence relation:
T(n) <2-T(n/2) + cn, T(1) <a

Verify by induction:
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Number of Inversions: Analysis
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Recurrence relation:

Tn)<2-T(n/2)+ cn,

T(1) <a

Guess the solution by drawing the recursion tree:
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Geometric divide-and-conquer
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Closest Pair Problem: Given a set S of n points, find a pair of
points with the smallest distance.

Naive solution:
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Divide-and-conquer solution
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1. Divide:  Divide S into two equal sized sets S, und S,.

2. Conquer: d, = mindist(S,) d, = mindist(S,)
3. Combine: d{’r = min{d(p& pr) | Pe € Sf: Pr € ST'}
return min{d,, d,, d,,}

S d o d
L1 r
I S
Sy S,
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Divide-and-conquer solution
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1. Divide:  Divide S into two equal sized sets S, und S,.
2. Conquer: d, = mindist(S,) d,= mlndlst(Sr

3. Combine: d{,,, = min{d(p,, p;) | pr € Sp, Py € Sr}
return min{d,, d,., d,, }

Computation of d,,:

o/. ®
d ="min{d, d.} °*

SRS O

S

S{’ Sr
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Combine step
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d = min{d,, dr}
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Combine step
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1. Consider only points within distance < d of the bisection
line, in the order of increasing y-coordinates.

2. For each point p consider all points g on the other side which
are within y-distance less than d

3. There are at most 4 such points.
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Implementation

* |Initially sort the points in S in order of increasing x-coordinates

* While computing closest pair, also sort S according to y-coord.
— Partition S into S, and S,., solve and sort sub-problems recursively

— Merge to get sorted S according to y-coordinates

— Center points: points within x-distance d = min{d,, d,} of center
— Go through center points in S in order of incr. y-coordinates
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Running Time
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Recurrence relation:

Tn)=2-T(n/2)+c-n,

Solution:

e Same as for computing number of number of inversions,

merge sort (and many others...)
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