
Chapter 1

Divide and Conquer

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Divide-And-Conquer Principle

• Important algorithm design method

• Examples from basic alg. & data structures class (Informatik 2):
• Sorting: Mergesort, Quicksort

• Binary search

• Further examples
• Median

• Compairing orders

• Convex hull / Delaunay triangulation / Voronoi diagram

• Closest pairs

• Line intersections

• Polynomial multiplication / FFT

• ...

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

function Quick (𝑆: sequence): sequence;

{returns the sorted sequence 𝑆}

begin

if #𝑆 ≤ 1 then return 𝑆

else { choose pivot element 𝑣 in 𝑆;

partition 𝑆 into 𝑆ℓ with elements ≥ 𝑣,

and 𝑆𝑟 with elements ≥ 𝑣

return

end;

Example 1: Quicksort

𝑆

𝑆ℓ ≤ 𝑣 𝑣 𝑆𝑟 ≥ 𝑣

𝑣

Quick(𝑆ℓ) 𝑣 Quick(𝑆𝑟)

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Example 2: Mergesort

𝑆

𝑆ℓ 𝑆𝑟

𝑆ℓ 𝑆ℓ

sort recursively sort recursively

𝑆

merge

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Formulation of the D&C principle

Divide-and-conquer method for solving a
problem instance of size 𝑛:

1. Divide

𝑛 ≤ 𝑐: Solve the problem directly.

𝑛 > 𝑐: Divide the problem into 𝑘 subproblems of
sizes 𝑛1, … , 𝑛𝑘 < 𝑛 (𝑘 ≥ 2).

2. Conquer

Solve the 𝑘 subproblems in the same way
(recursively).

3. Combine

Combine the partial solutions to generate a solution
for the original instance.

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Analysis

Recurrence relation:

• 𝑻(𝒏) : max. number of steps necessary for solving an instance of size 𝑛

• 𝑻(𝒏) = ቐ
𝒂 𝐢𝐟 𝒏 ≤ 𝒄
𝑻 𝒏𝟏 +⋯+ 𝑻 𝒏𝒌 𝐢𝐟 𝒏 > 𝒄
+ 𝐜𝐨𝐬𝐭 𝐟𝐨𝐫 𝐝𝐢𝐯𝐢𝐝𝐞 𝐚𝐧𝐝 𝐜𝐨𝐦𝐛𝐢𝐧𝐞

Special case: 𝒌 = 𝟐, 𝒏𝟏 = 𝒏𝟐 = Τ𝒏 𝟐

• cost for divide and combine: DC 𝑛
• 𝑇(1) = 𝑎
• 𝑇(𝑛) = 2𝑇(𝑛/2) + DC(𝑛)

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Comparing Orders

• Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, …

• Collaborative filtering:
– Predict user taste by comparing rankings of different users.

– If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

• Core issue: Compare two rankings
– Intuitively, two rankings (of movies) are more similar, the more pairs are

ordered in the same way

– Label the first user’s movies from 1 to 𝑛 according to ranking

– Order labels according to second user’s ranking

– How far is this from the ascending order (of the first user)?

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Number of Inversions

Formal problem:

• Given: array 𝐴 = [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛] of distinct elements

• Objective: Compute number of inversions 𝐼

𝐼 ≔ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 𝑎𝑖 > 𝑎𝑗

• Example: 𝐴 = [4 , 1 , 5 , 2 , 7 , 10 , 6]

• Naïve solution:

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Divide and conquer

1. Divide array into 2 equal parts 𝐴ℓ and 𝐴𝑟

2. Recursively compute #inversions in 𝐴ℓ and 𝐴𝑟

3. Combine: add #pairs 𝑎𝑖 ∈ 𝐴ℓ, 𝑎𝑗 ∈ 𝐴𝑟 such that 𝑎𝑖 > 𝑎𝑗

𝐴

𝐴ℓ 𝐴𝑟

𝐴ℓ 𝐴𝑟𝑎𝑖 𝑎𝑗

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Combine Step

Assume 𝐴ℓ and 𝐴𝑟 are sorted

Idea:

• Maintain pointers 𝑖 and 𝑗 to go through the sorted parts

• While going through the sorted parts, we merge the two parts
into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

Invariant:

• At each point in time, all inversions involving some element left
of 𝑖 (in 𝐴ℓ) or left of 𝑗 (in 𝐴𝑟) are counted
– and all others still have to be counted...

𝐴ℓ 𝐴𝑟
𝑎𝑖 𝑎𝑗

𝒊 𝒋

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Combine Step

Assume 𝐴ℓ and 𝐴𝑟 are sorted

• Pointers 𝑖 and 𝑗, initially pointing to first elements of 𝐴ℓ and 𝐴𝑟

• If 𝑎𝑖 < 𝑎𝑗:

– 𝑎𝑖 is smallest among the remaining elements

– No inversion of 𝑎𝑖 and one of the remaining elements

– Do not change count

• If 𝑎𝑖 > 𝑎𝑗:

– 𝑎𝑗 is smallest among the remaining elements

– 𝑎𝑗 is smaller than all remaining elements in 𝐴ℓ

– Add number of remaining elements in 𝐴ℓ to count

• Increment point, pointing to smaller element

𝐴ℓ 𝐴𝑟
𝑎𝑖 𝑎𝑗

𝒊 𝒋

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Combine Step

• Need sub-sequences in sorted order

• Then, combine step is like merging in merge sort

• Idea: Solve sorting and #inversions at the same time!
1. Partition 𝐴 into two equal parts 𝐴ℓ and 𝐴𝑟

2. Recursively compute #inversions and sort 𝐴ℓ and 𝐴𝑟

3. Merge 𝐴ℓ and 𝐴𝑟 to sorted sequence, at the same time, compute
number of inversions between elements 𝑎𝑖 in 𝐴ℓ and 𝑎𝑗 in 𝐴𝑟

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Combine Step: Example

• Assume 𝐴ℓ and 𝐴𝑟 are sorted

3 5 8 13 14 18 24 25 30 6 7 9 19 21 23 28 32 33

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Number of Inversion: Analysis

Recurrence relation:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐𝑛, 𝑇 1 ≤ 𝑎

Guess the solution by repeated substitution:

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Number of Inversions: Analysis

Recurrence relation:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐𝑛, 𝑇 1 ≤ 𝑎

Verify by induction:

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Number of Inversions: Analysis

Recurrence relation:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐𝑛, 𝑇 1 ≤ 𝑎

Guess the solution by drawing the recursion tree:

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Geometric divide-and-conquer

Closest Pair Problem: Given a set 𝑆 of 𝑛 points, find a pair of
points with the smallest distance.

Naïve solution:

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Divide-and-conquer solution

1. Divide: Divide 𝑆 into two equal sized sets 𝑆ℓ und 𝑆𝑟.
2. Conquer: 𝑑ℓ = mindist(𝑆ℓ) 𝑑𝑟 = mindist 𝑆𝑟
3. Combine: 𝑑ℓ𝑟 = min 𝑑 𝑝ℓ, 𝑝𝑟 | 𝑝ℓ ∈ 𝑆ℓ, 𝑝𝑟 ∈ 𝑆𝑟

return min{𝑑ℓ, 𝑑𝑟 , 𝑑ℓ𝑟}

𝑆

𝑑ℓ

𝑑ℓ𝑟 𝑑𝑟

𝑆𝑟𝑆ℓ

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Divide-and-conquer solution

1. Divide: Divide 𝑆 into two equal sized sets 𝑆ℓ und 𝑆𝑟.
2. Conquer: 𝑑ℓ = mindist(𝑆ℓ) 𝑑𝑟 = mindist(𝑆𝑟

)
3. Combine: 𝑑ℓ𝑟 = min 𝑑 𝑝ℓ, 𝑝𝑟 | 𝑝ℓ ∈ 𝑆ℓ, 𝑝𝑟 ∈ 𝑆𝑟

return min 𝑑ℓ, 𝑑𝑟 , 𝑑ℓ𝑟

Computation of 𝒅ℓ𝒓:

𝑆

𝑑 = min{𝑑ℓ, 𝑑𝑟}

𝑆𝑟𝑆ℓ

𝑑
𝑝

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Combine step

𝑑 𝑑

𝑑 = min{𝑑ℓ , 𝑑𝑟}

𝑆

𝑆ℓ 𝑆𝑟

𝑝1

𝑝3

𝑝4

𝑝2

𝑑

𝑑

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Combine step

1. Consider only points within distance ≤ 𝑑 of the bisection
line, in the order of increasing 𝑦-coordinates.

2. For each point 𝑝 consider all points 𝑞 on the other side which
are within 𝑦-distance less than 𝑑

3. There are at most 4 such points.

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Implementation

• Initially sort the points in 𝑆 in order of increasing 𝑥-coordinates

• While computing closest pair, also sort 𝑆 according to 𝑦-coord.
– Partition 𝑆 into 𝑆ℓ and 𝑆𝑟, solve and sort sub-problems recursively

– Merge to get sorted 𝑆 according to 𝑦-coordinates

– Center points: points within 𝑥-distance 𝑑 = min 𝑑ℓ, 𝑑𝑟 of center

– Go through center points in 𝑆 in order of incr. 𝑦-coordinates

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Running Time

Recurrence relation:

𝑇 𝑛 = 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐 ⋅ 𝑛, 𝑇 1 = 𝑎

Solution:

• Same as for computing number of number of inversions,
merge sort (and many others…)

𝑇 𝑛 = 𝑂(𝑛 ⋅ log 𝑛)

