

Chapter 1 Divide and Conquer

Algorithm Theory WS 2016/17

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design method
- Examples from basic alg. & data structures class (Informatik 2):
 - Sorting: Mergesort, Quicksort
 - Binary search
- Further examples
 - Median
 - Compairing orders
 - Convex hull / Delaunay triangulation / Voronoi diagram
 - Closest pairs
 - Line intersections
 - Polynomial multiplication / FFT
 - •

Example 1: Quicksort

Formulation of the D&C principle

Analysis

Recurrence relation:

• T(n): max. number of steps necessary for solving an instance of size n

•
$$T(\underline{n}) \leq \begin{cases} \underline{a} & \text{if } \underline{n} \leq c \\ T(\underline{n_1}) + \dots + T(\underline{n_k}) & \text{if } \underline{n} > c \\ + \underbrace{\text{cost for divide and combine}} \end{cases}$$

Special case:
$$k = 2$$
, $n_1 = n_2 = \frac{n}{2}$

$$n_1 = \lfloor \frac{n_2}{2} \rfloor, n_2 = \lceil \frac{n_2}{2} \rceil$$

- cost for divide and combine: DC(n)
- T(1) = a

•
$$\underline{T(n)} = \underline{2T(n/2)} + \underline{DC(n)}$$

$$Mergesont$$

$$T(u) = 2T(\frac{u}{2}) + O(u)$$

$$T(n) = O(n \log n)$$

Comparing Orders

- Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...
- Collaborative filtering:
 - Predict user taste by comparing rankings of different users.
 - If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- Core issue: Compare two rankings
 - Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
 - Label the first user's movies from <u>1 to n</u> according to ranking
 - Order labels according to second user's ranking
 - How far is this from the ascending order (of the first user)?

Formal problem:

• **Given**: array $A = [a_1, a_2, a_3, ..., a_n]$ of distinct elements

• **Objective**: Compute number of inversions *I*

 $I \coloneqq \left| \left\{ 0 \le i < j \le n \mid a_i > a_j \right) \right\} \right|$

- Example: A = [4, 1, 5, 2, 7, 10, 6]Sinversions
- Naïve solution: check all the poirs thuning time : $O(n^2)$

Divide and conquer

- 1. Divide array into 2 equal parts A_{ℓ} and A_r
- 2. Recursively compute #inversions in A_{ℓ} and A_r
- 3. Combine: add #pairs $a_i \in A_\ell$, $a_j \in A_r$ such that $a_i > a_j$

Combine Step

Assume A_{ℓ} and A_r are sorted

- Maintain pointers *i* and *j* to go through the sorted parts
- While going through the sorted parts, we merge the two parts into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

Invariant:

- At each point in time, all inversions involving some element left of *i* (in A_l) or left of *j* (in A_r) are counted
 - and all others still have to be counted...

Combine Step

Assume A_{ℓ} and A_r are sorted

 a_i $-A_{\rho}$

a

- Pointers *i* and *j*, initially pointing to first elements of A_{ℓ} and A_r
- If $a_i < a_i$:
 - $-a_i$ is smallest among the remaining elements
 - No inversion of a_i and one of the remaining elements
 - Do not change count
- If $a_i > a_i$:
 - $-a_i$ is smallest among the remaining elements
 - $-a_i$ is smaller than all remaining elements in A_ℓ
 - Add number of remaining elements in A_{ℓ} to count
- Increment point, pointing to smaller element

Algorithm Theory, WS 2016/17

Fabian Kuhn

Combine Step

- Need sub-sequences in sorted order
- Then, combine step is like merging in merge sort
- Idea: Solve sorting and #inversions at the same time!
 - 1. Partition A into two equal parts A_{ℓ} and A_r
 - 2. Recursively compute #inversions and sort A_{ℓ} and A_r and recursively sort A_{ℓ} & A_{r}
 - 3. Merge A_{ℓ} and A_r to sorted sequence, at the same time, compute number of inversions between elements a_i in A_{ℓ} and a_j in A_r combine costs O(n)

Combine Step: Example

356789131418

0+7+7+6

Number of Inversion: Analysis

Guess the solution by repeated substitution:

$$T(n) \leq 2T(\frac{n}{2}) + cn$$

$$\leq 2(2T(\frac{n}{4}) + c\frac{n}{2}) + cn = 4T(\frac{n}{4}) + 2cn$$

$$\leq 4(2T(\frac{n}{8}) + c\frac{n}{4}) + 2cn = 8T(\frac{n}{8}) + 3cn$$

$$\vdots$$

$$\leq 2^{k}T(\frac{n}{2^{k}}) + kcn \qquad set 2^{k} = n$$

$$\leq nT(1) + cn \log_{2} n = n(a + c\log_{2} n)$$

Recurrence relation:

$$T(n) \leq 2 \cdot T(n/2) + cn, \qquad T(1) \leq a$$
Verify by induction: Guess: $T(n) \leq n(a + c\log n)$

Base: $n = 1$: $T(1) \leq a$

Step: guess is true for instances of size $< n$

 $T(n) \leq 2T(\frac{n}{2}) + cn$

 $\leq 2 \cdot \frac{n}{2}(a + c\log \frac{n}{2}) + cn$

 $= n(a + c + c\log \frac{n}{2}) = n(a + c\log n)$

 $\log n - 1$

Recurrence relation:

 $T(n) \le 2 \cdot T(n/2) + cn, \qquad T(1) \le a$

Guess the solution by drawing the recursion tree:

Geometric divide-and-conquer

FREBURG

Closest Pair Problem: Given a set *S* of *n* points, find a pair of points with the smallest distance.

Divide-and-conquer solution

Divide-and-conquer solution

if do < d

- **1. Divide:** Divide S into two equal sized sets S_{ℓ} und S_r .
- **2. Conquer:** $d_{\ell} = \text{mindist}(S_{\ell})$ $d_r = \text{mindist}(Sr_{\ell})$
- 3. Combine: $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}'$ return $\min\{d_{\ell}, d_r, d_{\ell r}\} \longrightarrow Only need der$

Computation of $d_{\ell r}$:

Combine step

- 1. Consider only points within distance $\leq d$ of the bisection line, in the order of increasing y-coordinates.
- 2. For each point p consider all points q on the other side which are within y-distance less than d
- 3. There are at most 4 such points.

Implementation

- Initially sort the points in *S* in order of increasing *x*-coordinates
- While computing closest pair, also sort *S* according to *y*-coord.
 - Partition S into S_{ℓ} and S_r , solve and sort sub-problems recursively
 - Merge to get sorted S according to y-coordinates (ombine + merge in O(n) time
 - Center points: points within x-distance $d = \min\{d_{\ell}, d_r\}$ of center
 - Go through center points in *S* in order of incr. *y*-coordinates

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + \underline{c \cdot n}, \qquad T(1) = a$$

Solution:

• Same as for computing number of number of inversions, merge sort (and many others...)

$$T(n) = O(n \cdot \log n)$$