Chapter 1 Divide and Conquer

Algorithm Theory WS 2016/17

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design method
- Examples from basic alg. \& data structures class (Informatik 2):
- Sorting: Mergesort, Quicksort
- Binary search
- Further examples
- Median
- Compairing orders
- Convex hull / Delaunay triangulation / Voronoi diagram
- Closest pairs
- Line intersections
- Polynomial multiplication / FFT
- ...

Example 1: Quicksort

function Quick (S : sequence): sequence;
$\{r e t u r n s$ the sorted sequence $S\}$
begin
if $\# S \leq 1$ then return S

else $\{$ choose pivot element v in S; partition S into S_{ℓ} with elements $\geq v$, and S_{r} with elements $\geq v$ return | Quick $\left(S_{\ell}\right)$ | v | Quick $\left(S_{r}\right)$ |
| :--- | :--- | :--- |

end;

Example 2: Mergesort

Formulation of the D\&C principle

Divide-and-conquer method for solving a problem instance of size n :

1. Divide
$n \leq c$: Solve the problem directly.
$n>c$: Divide the problem into k subproblem of sizes $n_{1}, \ldots, n_{k}<n(k \geq 2) .(k=1$ posille $)$
2. Conquer

Solve the k subproblems in the same way (recursively).
3. Combine

Combine the partial solutions to generate a solution for the original instance.

Analysis

Recurrence relation:

- $\boldsymbol{T}(\boldsymbol{n})$: max. number of steps necessary for solving an instance of size n
- $T(n) \leq \begin{cases}a & \text { if } n \leq c \\ T\left(n_{1}\right)+\cdots+T\left(n_{k}\right) & \text { if } \underline{n>c} \\ +\underline{\underline{n} \text { cost for divide }} \text { and combine } & \end{cases}$

Special case: $k=\underline{2}, n_{1}=n_{2}=n / 2$

$$
n_{1}=\lfloor n / 2\rfloor, n_{2}=\left\lfloor\frac{u}{2}\right\rceil
$$

- cost for divide and combine: $\mathrm{DC}(n)$
- $T(1)=a$
- $T(n)=\underline{2 T(n / 2)}+\underline{\mathrm{DC}(n)}$

$$
\begin{aligned}
& \text { Mergsat } \\
& \begin{array}{l}
T(n)=2 T(n / 2)+O(n) \\
T(n)=O(n \log n)
\end{array}
\end{aligned}
$$

Comparing Orders

- Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...
- Collaborative filtering:
- Predict user taste by comparing rankings of different users.
- If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- Core issue: Compare two rankings
- Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
- Label the first user's movies from 1 to n according to ranking
- Order labels according to second user's ranking
- How far is this from the ascending order (of the first user)?

Number of Inversions

Formal problem:

- Given: array $A=\left[a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right]$ of distinct elements
- Objective: Compute number of inversions I

$$
\left.I:=\mid\left\{0 \leq i<j \leq n \mid a_{i}>a_{j}\right)\right\} \mid
$$

- Example: $A=[\underbrace{4,1,5,2} \underbrace{40}]^{\text {inversions }}$
- Naïve solution: check all the pairs

$$
\text { running time: } O\left(n^{2}\right)
$$

Divide and conquer

1. Divide array into 2 equal parts A_{ℓ} and A_{r}
2. Recursively compute \#inversions in A_{ℓ} and A_{r}
3. Combine: add \#pairs $a_{i} \in A_{\ell}, a_{j} \in A_{r}$ such that $a_{i}>a_{j}$

Combine!

$$
\text { count \# } a_{i} \in A_{l}, a_{j} \in A_{r}: a_{j}<a_{i}
$$

Combine Step

Assume A_{ℓ} and A_{r} are sorted

- Maintain pointers i and j to go through the sorted parts
- While going through the sorted parts, we merge the two parts into one sorted part (like in MergeSort)
and we count the number of inversions between the parts

Invariant:

- At each point in time, all inversions involving some element left of i (in A_{ℓ}) or left of j (in A_{r}) are counted
- and all others still have to be counted...

Combine Step

Assume A_{ρ} and A_{r} are sorted

- Pointers i and j, initially pointing to first elements of A_{ℓ} and A_{r}
- If $a_{i}<a_{j}$:
- a_{i} is smallest among the remaining elements
- No inversion of a_{i} and one of the remaining elements
- Do not change count
- If $a_{i}>a_{j}$:
- a_{j} is smallest among the remaining elements
- a_{j} is smaller than all remaining elements in A_{ℓ}
- Add number of remaining elements in A_{ℓ} to count
- Increment point, pointing to smaller element

Combine Step

- Need sub-sequences in sorted order
- Then, combine step is like merging in merge sort
- Idea: Solve sorting and \#inversions at the same time!

1. Partition A into two equal parts A_{ℓ} and A_{r}
2. Recursively compute \#inversions and sort A_{ℓ} and A_{r} and recursively sort $A_{e} \& A r_{r}$
3. Merge A_{ℓ} and A_{r} to sorted sequence, at the same time, compute number of inversions between elements a_{i} in A_{ℓ} and a_{j} in A_{r} combine costs $O(u)$

Combine Step: Example

- Assume A_{ℓ} and A_{r} are sorted

3	5	6	7	8	9	13	14	18									

$0+7+7+6$

Number of Inversion: Analysis
Recurrence relation: \cot of recustion \cos of combine

$$
T(n) \leq 2 \cdot T(\underline{n / 2})+c n, \quad T(1) \leq a
$$

Guess the solution by repeated substitution:

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c n \\
& \leqslant 2\left(2 T(n / 4)+c \frac{n}{2}\right)+c n=4 T(n / 4)+2 c n \\
& \leqslant 4\left(2 T(n / 8)+c \frac{n}{4}\right)+2 c n=8 T(4 / 8)+3 c n \\
& \vdots \\
& \leqslant 2^{k} T\left(n / 2^{k}\right)+k c n \quad \text { set } 2^{k}=n \\
& \leq n T(1)+c n \log _{2} n=n\left(a+c \log _{2} n\right)
\end{aligned}
$$

Number of Inversions: Analysis
Recurrence relation:

$$
T(n) \leq 2 \cdot T(n / 2)+c n, \quad T(1) \leq a
$$

Verify by induction: Guess: $T(n) \leqslant n(a+c \log n)$
Base: $n=1: T(1) \leqslant a$
Step: guess is true for instances of sire $<n$

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \stackrel{I}{ } \leqslant+1) \\
& =n\left(a+\frac{n}{2}\left(a+c \log \frac{n}{2}\right)+c n\right. \\
& =\underbrace{\log \frac{n}{2}}_{\log n-1})=n(a+c \log n)
\end{aligned}
$$

Number of Inversions: Analysis

Recurrence relation:

$$
T(n) \leq 2 \cdot T(n / 2)+c n, \quad T(1) \leq a
$$

Guess the solution by drawing the recursion tree:

Geometric divide-and-conquer

Closest Pair Problem: Given a set S of n points, find a pair of points with the smallest distance.
-

Divide-and-conquer solution

a. soort by x-coordinate: O $\mathrm{m}(\mathrm{gn})$

1. Divide: Divide S into two equal sized sets S_{ℓ} und S_{r}.
2. Conquer: $d_{\ell}=\operatorname{mindist}\left(S_{\ell}\right) \quad d_{r}=\operatorname{mindist}\left(S_{r}\right)$
3. Combine: $d_{\ell r}=\min \left\{d\left(p_{\ell}, p_{r}\right) \mid p_{\ell} \in S_{\ell}, p_{r} \in S_{r}\right\}$ return $\min \left\{d_{\ell}^{-}, d_{r}^{-}, d_{\ell r}\right\}$

Divide-and-conquer solution

1. Divide: Divide S into two equal sized sets S_{ℓ} and S_{r}.
2. Conquer: $d_{\ell}=\operatorname{mindist}\left(S_{\ell}\right) \quad d_{r}=\operatorname{mindist}(S r$
3. Combine: $d_{\ell r}=\min \left\{d\left(p_{\ell}, p_{r}\right) \mid p_{\ell} \in S_{\ell}, p_{r} \in S_{r}\right\}$ return $\min \left\{d_{\ell}, d_{r}, d_{\ell r}\right\}-$ Css: only weed $d_{e r}$
Computation of $\boldsymbol{d}_{\ell r}$:

Combine step

Combine step

1. Consider only points within distance $\leq d$ of the bisection line, in the order of increasing y-coordinates.
2. For each point p consider all points q on the other side which are within y-distance less than d
3. There are at most 4 such points.

Implementation

- Initially sort the points in S in order of increasing x-coordinates
- While computing closest pair, also sort S according to y-coord.
- Partition S into S_{ℓ} and S_{r}, solve and sort sub-problems recursively
- Merge to get sorted S according to y-coordinates
combine + merge in $\delta(n)$ time
- Center points: points within x-distance $d=\min \left\{d_{\ell}, d_{r}\right\}$ of center
- Go through center points in S in order of incr. y-coordinates

Running Time

Recurrence relation:

$$
T(n)=2 \cdot T(n / 2)+\underline{\underline{c} \cdot n, \quad T(1)=a}
$$

Solution:

- Same as for computing number of number of inversions, merge sort (and many others...)

$$
T(n)=O(n \cdot \log n)
$$

