Chapter 1
Divide and Conquer

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Divide-And-Conquer Principle

UNI
f

FREIBURG

e |mportant algorithm design method

e Examples from basic alg. & data structures class (Informatik 2):

Sorting: Mergesort, Quicksort
Binary search

e Further examples

Median

Compairing orders

Convex hull / Delaunay triangulation / Voronoi diagram
Closest pairs

Line intersections

Polynomial multiplication / FFT

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Example 1: Quicksort

UNI
f

FREIBURG

S, < v % S

> U

L

~ 1
function Quick (S: sequence): sedfuence;
{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in §;
partition S into S, with elements = v,
and S, with elements > v
return | Quick(S,) v| Quick(S,)

end;

Algorithm Theory, WS 2016/17 Fabian Kuhn

/\p‘u vot

?mth\?aw

Example 2: Mergesort

UNI
f

FREIBURG

S
S S
sort recursively sort recursively
A4 A4
S¢ Sy
AN —~ 7 7 -
N e
S

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Formulation of the D&C principle

UNI

Divide-and-conquer method for solving a <
problem instance o Q

=~
va

n < c: Solve the problem directly.
— ..,

n > c: Divide the problem into k subproblems of
sizes 1y, ..., Ny <N (k = 2). (k=) \»oss.‘Un.)

Solve the k subproblems in the same way fecurse
(recursively).

Combine the partial solutions to generate a solution /
for the original instance.

Algorithm Theory, WS 2016/17 Fabian Kuhn

dvde I
o wddle

ecnrs

FREIBURG

Analysis

UNI
FREIBURG

Recurrence relation:

. T(n) : max. number of steps necessary for solving an instance of sizen

.
——

‘

a ifn<c
« T(n) <4 T(ny) + -+ T(ny) ifn>c
— | + cost for divide and combine
: n A=) n, AW
Special case: k =2,n, = n, ="/, L], /5

 cost for divide and combine: DC(n)

*T()=a Merye ot
e T = 2T(n/2) + DC(

T =O(w /(660\7

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Comparing Orders

UNI

FREIBURG

 Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, ...

e Collaborative filtering:
— Predict user taste by comparing rankings of different users.

— If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

* Core issue: Compare two rankings

— Intuitively, two rankings (of movies) are more similar, the more pairs are
ordered in the same way

— Label the first user’s movies from 1 to n according to ranking
— Order labels according to second user’s ranking
— How far is this from the ascending order (of the first user)?

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

UNI
f

FREIBURG

Number of Inversions

Formal problem:
* Given:array A = a4, a,, as, ..., a, | of distinct elements

* Objective: Compute number of inversions |

:|{ogi<jsn|az>aj)}|

* Example:A=[4 ,1,5,2,7, 10 6]

_
k\/_/ V g luver Gions

« Naive solution: cledz &l e peirs
“Ahw\va me O(V\Z')

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Divide and conquer

[N

i

\/“-/Agx‘\/ - = AT ———

1. Divide array into 2 equal parts A, and A,
2. Recursively compute #inversions in A, and A,
3. Combine: add #pairs a; € Ay, a; € A, such that a; > a;

Ay ai a; A,
S F

C@Mb\ue '

P —

count + C(;é?(e /Q}éAc . (1-)<q.

¢

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

Combine Step

UNI
f

FREIBURG

Assume A, and A, are sorted

i a; Af af Ar
? é $ C;?
Idea: P

* Maintain pointers i and j to go through the sorted parts

* While going through the sorted parts, we merge the two parts
into one sorted part (like in MergeSort)

and we count the number of inversions between the parts

(lnvariant:

* At each pointin time, all inversions involving some element left
of i (in A;) or left of j (in A,.) are counted

— and all others still have to be counted...

|

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

UNI

Combine Step

FREIBURG

Assume A, and A, are sorted

* Pointers i and j, initially pointing to first elements of A, and A,
e |f a; < Cljl

— a; is smallest among the remaining elements

— ﬁo inversion of a; and one of the remaining elements

— Do not change count
* Ifa; > a;:

— a; is smallest among the remaining elements

— a; is smaller than all remaining elements in A,

— Add number of remaining elements in A, to count

* Increment point, pointing to smaller element

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Combine Step

UNI
f

FREIBURG

* Need sub-sequences in sorted order
* Then, combine step is like merging in merge sort

* ldea: Solve sorting and #inversions at the same time!
1. Partition A into two equal parts A, and A,
2. Recursively compute #inversions and sort A, and A,

Qud chuF,}vdt/ soct Ae 2 7((‘

3. Merge A, and A, to sorted sequence, at the same time, compute
number of inversions between elements a; in A, and a; in 4,

COwJoﬁuuz C&sk @(‘A)

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

UNI

Combine Step: Example

FREIBURG

* Assume A, and A, are sorted
=

3|5|8|13/14|18|24|25|30 L{S 719
T o711 79 TS

—
O

21123128|32|33

-

3156138931413

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Number of Inversion: Analysis

UNI

FREIBURG

O w\,q‘me
Recurrence relation:) } e /(a’\ 4 ¢
a—" " an
T(n) <2-T(n/2) +cn, T(1)<a
—— — —

Guess the solution by repeated substitution:
T(we 2TER) +an
< 2(2TCk v <¥) +cm

SY(2TCR+ ¢3) 4 2em

4T(%) + 2Lew
87('1/8) + ng\

1)

2T () + ke ol F=n
= “,f”)+ CV\Qﬂézﬂ = V\(Q-\- Cfﬂazm)

(V\a'l")

INn ..

Algorithm Theory, WS 2016/17 Fabian Kuhn

14

Number of Inversions: Analysis

Recurrence relation:

T(n) <2-T(n/2)+ cn, T(1)<a
Verify by induction: Guags_: TW£ w(a + CQ”B"')
Bre w=) TO=a

Sl'__QY_" %“_995 'b)'m QN \(o\s“&u(ﬂs DQ Sire & N

T ¢ 2TML) tcn

() W
< 2-%(a+ CQ@BE) + Cn

= Y\(a+ C 4 cfgﬁ) = u(a x chyu)
Qgsu—\ D

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
FREIBURG

Number of Inversions: Analysis

UNI

FREIBURG

Recurrence relation:
T(n) <2-T(n/2) + cn, T(1) <a

Guess the solution by drawing the_recursion tree:

veide @ cow Hiug

// \ - —=3 Cwn
“/ ‘v | -—/ S 2<%

Y,
/—\‘\ — —_ - — L(C'_?‘_ =
\A/% A N
s, u fave&
A\/\—\/\ S —/\ —
| 1 U (S \) = n-T(D) = wug

Algorithm Theory, WS 2016/17 Fabian Kuhn

16

Geometric divide-and-conquer

UNI
f

FREIBURG

Closest Pair Problem: Given a set S of;r:z points, find a pair of

points with the smallest distance.

Naive solution:

Algorithm Theory, WS 2016/17

cliack «lf f‘t\%

O(w?)

Fabian Kuhn

17

Divide-and-conquer solution

UNI
FREIBURG

0, 94‘4 \417 x—cwrcﬂ)uak " O(M(?z")
1. Divide: Divide S into two equal sized sets S, und S,.
2. Conquer: d, = mindist(S,) d, = mindist(S,)

3. Combine: d{’r = min{d(p& pr) | Pe € Sf: Pr € ST'}
‘: return min{d,, d,, d,,}

S (&)
S{’ Sr

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Divide-and-conquer solution

UNI
f

FREIBURG

1. Divide: Divide S into two equal sized sets S, und S,.
2. Conquer: d, = mindist(S,) d,= mlndlst(Sr
3. Combine: d{’r = min{d(p,, pr) | D¢ € Se, Dr € Sr}

return min{dy, d,, dpy} <— s ouly weed

Computation of d,,: £ do 2 d
° (°
S (]
— .
d = min{dy, d, }x—*=| i .
o d
® o p .
e ° — .
e//o /
Se | Sr

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Combine step

UNI
FREIBURG

d = min{d,, dr}

Algorithm Theory, WS 2016/17 Fabian Kuhn

—
A/{i
[

-
Py L
? —

< > o

d

20

Combine step

UNI

FREIBURG

1. Consider only points within distance < d of the bisection
line, in the order of increasing y-coordinates.

2. For each point p consider all points g on the other side which
are within y-distance less than d

3. There are at most 4 such points.

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Implementation

UNI
f

FREIBURG

* |Initially sort the points in S in order of increasing x-coordinates

* While computing closest pair, also sort S according to y-coord.
— Partition S into S, and S,., solve and sort sub-problems recursively

— Merge to get sorted S according to y-coordinates
(owblt + wergl u) Hug

— Center points: points within x-distance d = min{d,, d,} of center
— Go through center points in S in order of incr. y-coordinates

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Running Time

UNI
FREIBURG

Recurrence relation:

Tn)=2-T(n/2)+ cn,

Solution:

e Same as for computing number of number of inversions,

merge sort (and many others...)

Algorithm Theory, WS 2016/17

T(n) = 0(n-logn)

Fabian Kuhn

T(1) =a

23

