

Chapter 1 Divide and Conquer

Algorithm Theory WS 2016/17

Formulation of the D&C principle

Divide-and-conquer method for solving a problem instance of size \underline{n} :

1. Divide

 $n \leq c$: Solve the problem directly.

n > c: Divide the problem into \underline{k} subproblems of sizes $n_1, \dots, n_k < n$ ($k \ge \frac{2}{2}$).

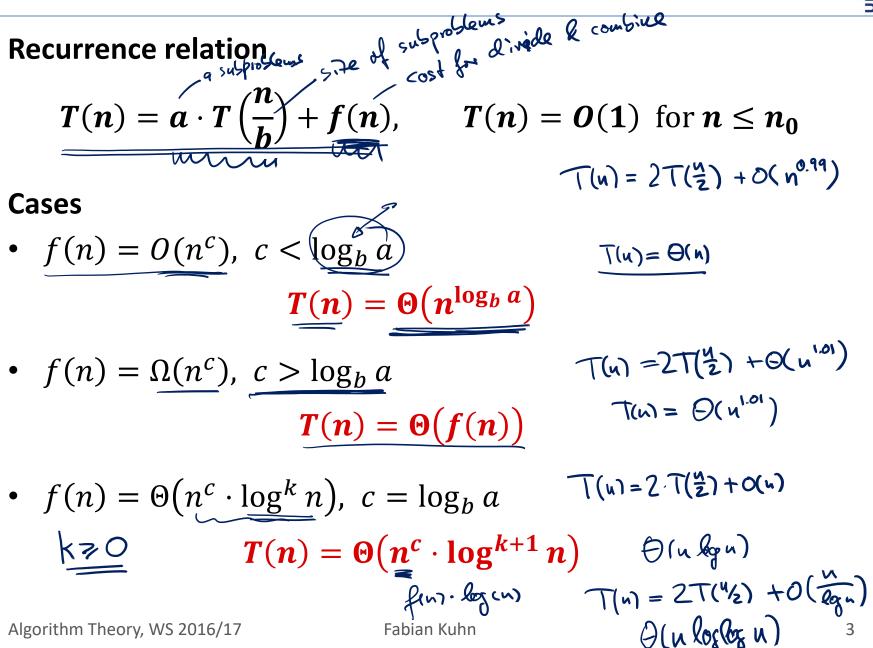
2. Conquer

Solve the k subproblems in the same way (recursively).

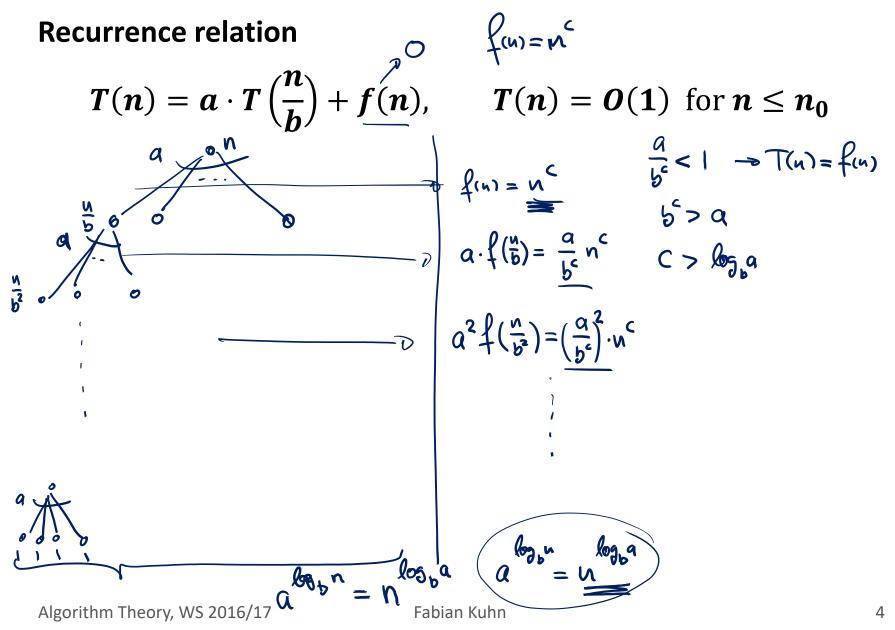
3. Combine

Combine the partial solutions to generate a solution for the original instance.

Recurrence Relations: Master Theorem



Recurrence Relations: Master Theorem



Polynomials

<u>Real polynomial p in one variable x:</u> $p(x) = a_{n-1}x^{n-1} + \dots + a_1x^1 + a_0$

Coefficients of $p: a_0, a_1, ..., a_n \in \mathbb{R}$ Degree of p: largest power of x in p (n - 1 in the above case)

Example:

$$p(x) = 3x^3 - 15x^2 + 18x + O$$

 $Q = (Q_{a_1}, Q_{a_2}, Q_{3}) = (O, (8, -15, 3)$ Set of all real-valued polynomials in $x: \mathbb{R}[x]$ (polynomial ring)

Operations: Evaluation

• Given: Polynomial $p \in \mathbb{R}[x]$ of degree n - 1

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

• Given: Polynomial $p \in \mathbb{R}[x]$ of degree n - 1

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

- Horner's method for evaluation at specific value x_0 : $p(x_0) = \left(\dots \left((a_{n-1}x_0 + a_{n-2})x_0 + a_{n-3} \right) x_0 + \dots + a_1 \right) x_0 + a_0$
- Pseudo-code:

$$p \coloneqq a_{n-1}; i \coloneqq n-1;$$

while $(i > 0)$ do
 $i \coloneqq i-1;$
 $p \coloneqq p \cdot x_0 + a_i$

• Running time: O(n)

Operations: Addition

• Given: Polynomials $p, q \in \mathbb{R}[x]$ of degree n - 1

$$\underline{p(x)} = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

$$\underline{q(x)} = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x + b_0$$

• Compute sum p(x) + q(x): $C_i = a_i + b_i$

$$p(x) + q(x)$$

$$= (a_{n-1}x^{n-1} + \dots + a_0) + (b_{n-1}x^{n-1} + \dots + b_0)$$

$$= (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$
jume: Q(u)

Operations: Multiplication

• Given: Polynomials $p, q \in \mathbb{R}[x]$ of degree n - 1

$$p(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

$$p(x) = b_{n-1}x^{n-1} + \dots + b_1x + b_0$$

$$c_0 = a_0b_0, \ c_1 = a_0b_1 + a_1b_0, \ c_2 = a_0b_2 + a_1b_1 + a_2b_0$$

• Product
$$\underline{p(x) \cdot q(x)}$$
:
 $p(x) \cdot q(x) = (a_{n-1}x^{n-1} + \dots + a_0) \cdot (b_{n-1}x^{n-1} + \dots + b_0)$
 $= c_{2n-2}x^{2n-2} + c_{2n-3}x^{2n-3} + \dots + c_1x + c_0$

• Obtaining c_i : what products of monomials have degree *i*?

For
$$0 \le i \le 2n - 2$$
: $c_i = \sum_{j=0}^{l} a_j b_{i-j}$

where $a_i = b_i = 0$ for $i \ge n$.

• Running time naïve algorithm: $O(n^2)$

Algorithm Theory, WS 2016/17

Faster Multiplication?

- Multiplication is slow $(\Theta(n^2))$ when using the standard coefficient representation
- Try divide-and-conquer to get a faster algorithm
- Assume: degree is n-1, n is even $n \ge power of 2$
- Divide polynomial $p(x) = a_{n-1}x^{n-1} + \dots + a_0$ into 2 polynomials of degree n/2 1: N-V

$$p_{0}(x) = an_{/2^{-1}}x^{n/2^{-1}} + \dots + a_{0}$$

$$p_{1}(x) = (a_{n-1}x^{n/2^{-1}} + \dots + an_{/2}) \times x^{n/2}$$

$$p(x) = p_{1}(x) \cdot x^{n/2} + p_{0}(x)$$

• Similarly: $q(x) = q_1(x) \cdot x^{n/2} + q_0(x)$

Use Divide-And-Conquer

• Divide:

$$p(x) = p_1(x) \cdot x^{n/2} + p_0(x), \qquad q(x) = q_1(x) \cdot x^{n/2} + q_0(x)$$

• Multiplication:

$$p(x)q(x) = \underbrace{p_1(x)q_1(x) \cdot \underline{x}^n}_{(\underline{p_0(x)q_1(x)} + \underline{p_1(x)q_0(x)}) \cdot \underline{x}^{n/2}}_{(\underline{p_0(x)q_0(x)}) \cdot \underline{p_0(x)q_0(x)}}$$

- <u>4</u> multiplications of degree $\frac{n}{2} 1$ polynomials: $I_{\alpha} = \log_{2} 4 = 2$ $I_{\alpha} = \log_{2} 4 = 2$
- Leads to $T(n) = \Theta(n^2)$ like the naive algorithm...
 - follows immediately by using the master theorem

More Clever Recursive Solution

• Recall that

$$p(x)q(x) = p_{1}(x)q_{1}(x) \cdot x^{n} + (p_{0}(x)q_{1}(x) + p_{1}(x)q_{0}(x)) \cdot x^{n/2} + p_{0}(x)q_{0}(x)$$
• Compute $r(x) = (p_{0}(x) + p_{1}(x)) \cdot (q_{0}(x) + q_{1}(x))$:

$$r(x) = p_{0}(x)q_{0}(x) + p_{0}(x)q_{0}(x) + p_{1}(x)q_{0}(x) + p_{1}(x)q_{0}(x) + p_{1}(x)q_{0}(x)$$

$$\frac{C}{B} = \frac{\Gamma(x)}{A}, C$$

$$B = \Gamma(x) - A - C$$

UNI FREIBURG

Karatsuba Algorithm

• Recursive multiplication:

$$r(x) = (p_0(x) + p_1(x)) \cdot (q_0(x) + q_1(x))$$

$$p(x)q(x) = p_1(x)q_1(x) \cdot x^n$$

$$+ (r(x) - p_0(x)q_0(x) + p_1(x)q_1(x)) \cdot x^{n/2}$$

$$+ p_0(x)q_0(x)$$

• Recursively do <u>3 multiplications of degr.</u> $\binom{n}{2} - 1$ -polynomials

$$T(n) = \frac{\sqrt[4]{3T(n/2)} + O(n)}{\sqrt[4]{2^3}}$$

• Gives: $T(n) = O(n^{1.58496...})$ (see Master theorem)

Representation of Polynomials

Coefficient representation:

- Polynomial $p(x) \in \mathbb{R}[x]$ of degree n 1 is given by its $n \text{ coefficients } \underbrace{a_0, \dots, a_{n-1}}_{p(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0}$
- Coefficient vector $\mathbf{a} = (a_0, a_1, \dots a_{n-1})$
- Example:

$$p(x) = 3x^3 - 15x^2 + 18x$$

• The most typical (and probably most natural) representation of polynomials

Representation of Polynomials

Product of linear factors:

• Polynomial $p(x) \in \mathbb{C}[x]$ of degr. n-1 is given by its n-1 roots

$$p(x) = \underbrace{a_{n-1}}_{\sim} \cdot (\underbrace{x - x_1}) \cdot (\underbrace{x - x_2}) \cdot \dots \cdot (\underbrace{x - x_{n-1}})$$

• Example:

$$p(x) = 3x(x-2)(x-3)$$
tools: 0, 2, 3

- Every polynomial has exactly n − 1 roots x_i ∈ C (s.t. p(x_i) = 0)
 Polynomial is uniquely defined by the n − 1 roots and a_{n-1}
- We will not use this representation...

Representation of Polynomials

Point-value representation:

• Polynomial $p(x) \in \mathbb{R}[x]$ of degree n - 1 is given by *n* point-value pairs:

$$p = \{ (x_0, p(x_0)), (x_1, p(x_1)), \dots, (x_{n-1}, p(x_{n-1})) \}$$

where $\underbrace{x_i \neq x_j}_{i \neq j}$ for $i \neq j$.

• Example: The polynomial

$$p(x) = 3x(x-2)(x-3)$$

is uniquely defined by the four point-value pairs (0,0), (1,6), (2,0), (3,0).

Operations: Coefficient Representation

 $p(x) = a_{n-1}x^{n-1} + \dots + a_0, \qquad q(x) = b_{n-1}x^{n-1} + \dots + b_0$

Evaluation: Horner's method: Time O(n)

Addition:

$$p(x) + q(x) = (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_0 + b_0)$$

• Time: *O*(*n*)

Multiplication:

$$p(x) \cdot q(x) = c_{2n-2}x^{2n-2} + \dots + c_0$$
, where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$

Naive solution: Need to compute product a_ib_j for all 0 ≤ i, j ≤ n
1.58
Time: O(n[™])

Algorithm Theory, WS 2016/17

Operations: Linear Factors (Roots)

$$p(x) = a_{n-1} \cdot (x - x_1) \cdot \dots \cdot (x - x_{n-1}) q(x) = b_{n-1} \cdot (x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

Evaluation:

• Just plug in the value where the poly. is evaluated: Time O(n)

Multiplication:

• Concatenate the two representations: Time O(n)

Addition:

- Need to find the roots of p(x) + q(x)
- For polynomials of degree > 4, this is not possible by using basic arithmetic operations $(+, -, \cdot, /, \sqrt[a]{b})$
- In the usual computational model impossible
 - Numerically, the roots can be computed to arbitrary precision

Algorithm Theory, WS 2016/17

Operations: Point-Value Representation

$$p = \{ (\underline{x_0}, \underline{p(x_0)}), \dots, (\underline{x_{n-1}}, p(x_{n-1})) \}$$
$$q = \{ (\underline{x_0}, \underline{q(x_0)}), \dots, (\underline{x_{n-1}}, q(x_{n-1})) \}$$

• Note: we use the same points x_0, \dots, x_n for both polynomials

Addition:

$$p + q = \{ (x_0, p(x_0) + q(x_0)), \dots, (x_{n-1}, p(x_{n-1}) + q(x_{n-1})) \}$$

• Time: *O*(*n*)

Multiplication:

$$p \cdot q = \{ (x_0, p(x_0) \cdot q(x_0)), \dots, (x_{2n-2}, p(x_{2n-2}) \cdot q(x_{2n-2})) \}$$

Time: $O(n)$

Evaluation: Polynomial interpolation can be done in $O(n^2)$

Algorithm Theory, WS 2016/17

Operations on Polynomials

HREIBURG

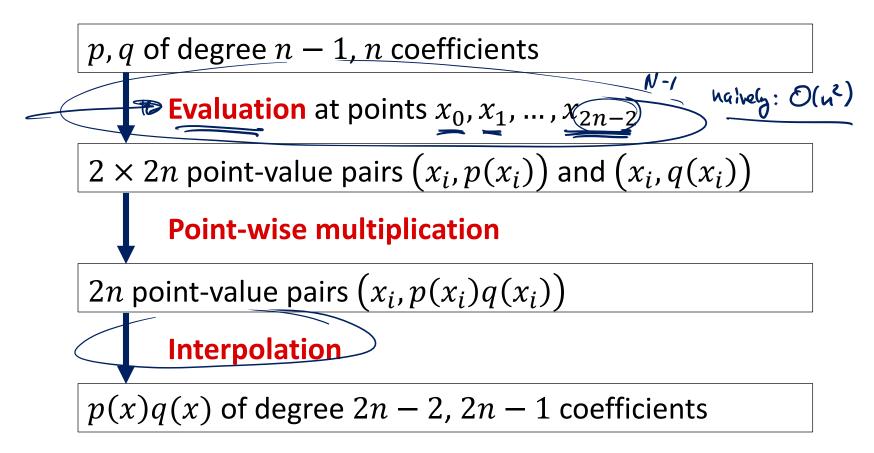
Cost depending on representation:

	Coefficient	Roots	Point-Value
Evaluation	0 (n)	O (n)	$O(n^2)$
Addition	0 (n)	8	0 (n)
Multiplic ation	O (n ^{1.58})	0 (n)	O (n)
D(ulogn) Cost??			

Faster Polynomial Multiplication?

Multiplication is fast when using the point-value representation

Idea to compute $p(x) \cdot q(x)$ (for polynomials of degree < n):



Coefficients to Point-Value Representation

Given: Polynomial p(x) by the coefficient vector $(a_0, a_1, ..., a_{N-1})$

- **Goal:** Compute p(x) for all x in a given set $X = (x_{y_1, y_2}, y_{y_3})$
 - Where X is of size |X| = N

- Assume that N is a power of 2 \Rightarrow $(augule P(x) \forall x \in X)$

Divide and Conquer Approach

Divide p(x) of degree N - 1 (N is even) into 2 polynomials of degree $N_{1/2} - 1$ differently than in Karatsuba's algorithm

•
$$p_0(y) = a_0 + a_2y + a_4y^2 + \dots + a_{N-2}y^{N/2-1}$$
 (even coeff.)
 $p_1(y) = a_1 + a_3y + a_5y^2 + \dots + a_{N-1}y^{N/2-1}$ (odd coeff.)
 $(a_0, a_2, a_3, \dots, a_{N-2})$

Coefficients to Point-Value Representation

FREIBURG

Goal: Compute $\underline{p(x)}$ for all x in a given set X of size |X| = N

- Divide p(x) of degr. N 1 into 2 polynomials of degr. $N/_2 1$
 - $p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1} \quad \text{(even coeff.)}$ $p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1} \quad \text{(odd coeff.)}$

Let's first look at the "combine" step:

• We need to compute $\underline{p(x)}$ for all $x \in X$ after recursive calls for polynomials $\underline{p_0}$ and $\underline{p_1}$: $p(x) = \underline{a_0} + \underline{a_1x} + \underline{a_2x^2} + \dots + \underline{a_{4x}y}$

$$\begin{aligned} \forall x \in X : p(x) &= p_0(x^2) + x \cdot p_1(x^2) & (\underline{ost} of \underline{combine} \\ & \times (a_1 + a_3 x^2 + a_5 x^4 + \dots) & O(|X|) \\ \text{recursively compute } p_0(y), p_1(y) \text{ for all } y \in X^2 & = \\ & \chi^2 := \int \chi^2 : x \in X \\ \end{aligned}$$

Coefficients to Point-Value Representation

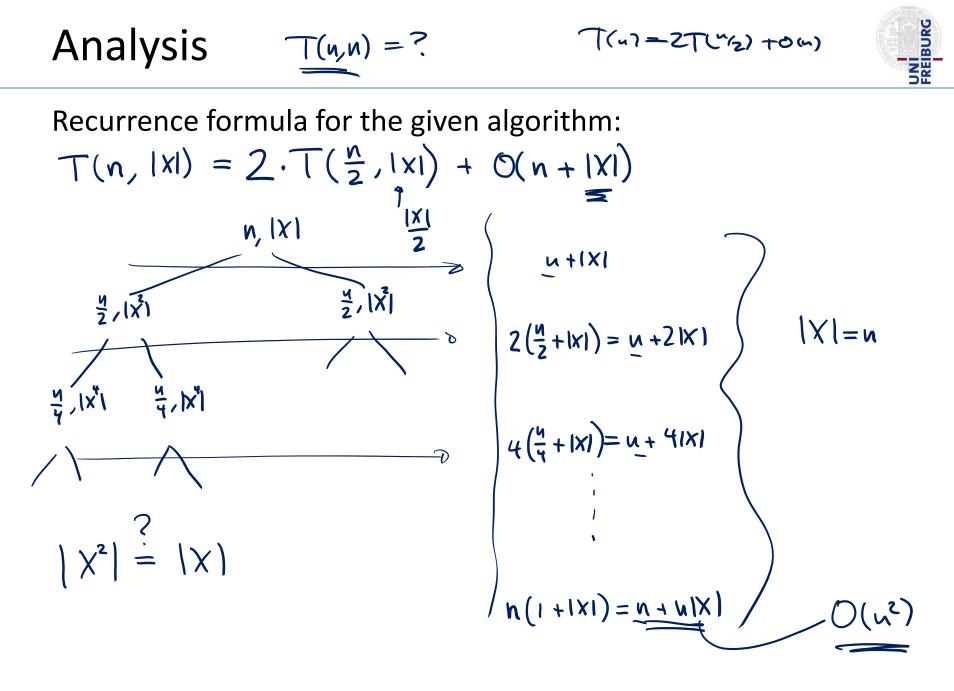
Goal: Compute p(x) for all x in a given set X of size |X| = N

- Divide p(x) of degr. N 1 into 2 polynomials of degr. $N/_2 1$
 - $p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1} \quad \text{(even coeff.)}$ $p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1} \quad \text{(odd coeff.)}$

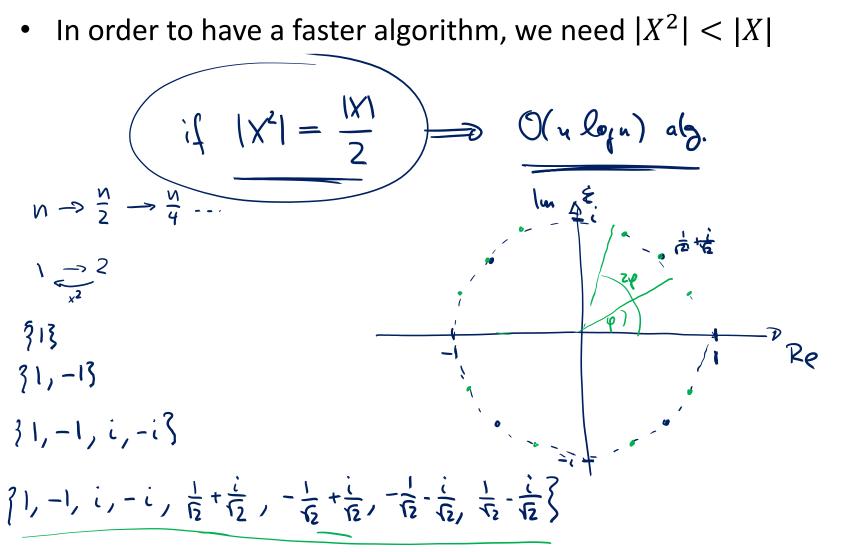
Let's first look at the "combine" step:

$$\forall x \in X: \quad p(x) = p_0(x^2) + x \cdot p_1(x^2)$$

- Recursively compute $\underline{p_0(y)}$ and $\underline{p_1(y)}$ for all $\underline{y \in X^2}$ - Where $X^2 \coloneqq \{x^2 : x \in X\}$
- Generally, we have $|X^2| = |X|$



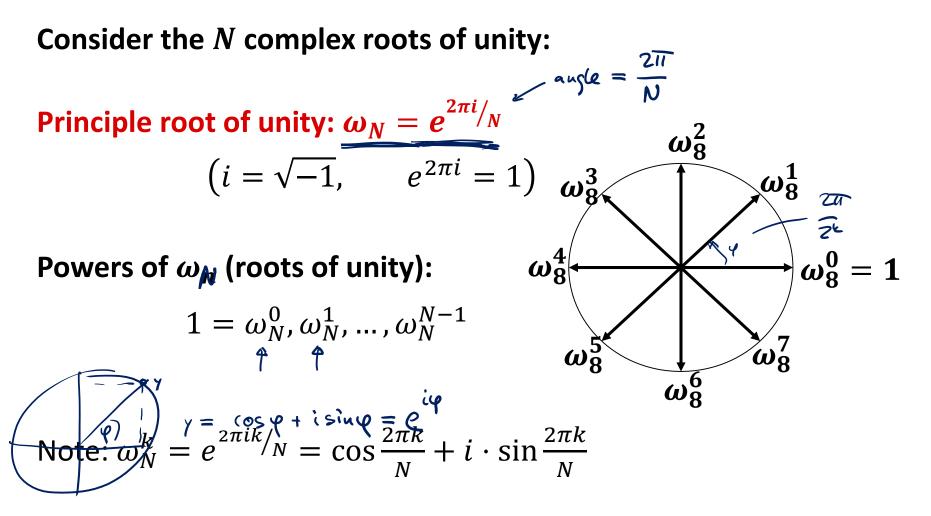
Faster Algorithm?



Choice of X

 $\chi'' = 1$

• Select points x_0, x_1, \dots, x_{N-1} to evaluate p and q in a clever way



Algorithm Theory, WS 2016/17

• Cancellation Lemma:

For all integers n > 0, $k \ge 0$, and d > 0, we have:

