

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2016/17

Fabian Kuhn

Greedy Algorithms

• No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
 - Optimal solutions
 - Close to optimal solutions
 - No (reasonable) solutions at all
- If it works, very interesting approach!
 - And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

• **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

- **Goal:** Select largest possible non-overlapping set of intervals
 - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- Example: Intervals are room requests; satisfy as many as possible

UNI FREIBURG

Greedy Algorithms

• Several possibilities...

Choose first available interval:

Choose shortest available interval:

Choose available request with earliest finishing time:

 $\begin{array}{l} R \coloneqq \text{set of all requests; } S \coloneqq \text{empty set;} \\ \textbf{while } R \text{ is not empty } \textbf{do} \\ \text{choose } r \in R \text{ with smallest finishing time} \\ \text{add } r \text{ to } S \\ \text{delete all requests from } R \text{ that are not compatible with } r \\ \textbf{end} \qquad // S \text{ is the solution} \end{array}$

Earliest Finishing Time is Optimal

- Let *O* be the set of intervals of an optimal solution
- Can we show that S = O?
 - No...

• Show that |S| = |O|.

UNI FREIBURG

Greedy Stays Ahead

FREBURG

Greedy Solution:

 $[a_1, b_1], [a_2, b_2], \dots, [a_{|S|}, b_{|S|}], \text{ where } b_i \le a_{i+1}$

• Optimal Solution:

 $[a_1^*, b_1^*], [a_2^*, b_2^*], \dots, [a_{|O|}^*, b_{|O|}^*],$ where $b_i^* \le a_{i+1}^*$

• Assume that $b_i = \infty$ for i > |S| and $b_i^* = \infty$ for i > |O|

Claim: For all $i \ge 1$, $b_i \le b_i^*$

FREIBURG

Claim: For all $i \ge 1$, $b_i \le b_i^*$

Proof (by induction on *i*):

Corollary: Earliest finishing time algorithm is optimal.

Algorithm Theory, WS 2016/17

Fabian Kuhn

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

• We will see an algorithm using another design technique later.

Interval Partitioning

- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
 - Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
 - Intervals are requests to use some room during this time
 - Assign all requests to some room such that there are no conflicts
 - Use as few rooms as possible
- Assignment to 3 resources:

Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
- Depth of initial example is 4 (e.g., [0,10], [4,7], [5,8], [5,12]):

Lemma: Number of resources needed \geq depth

Can we achieve a partition into "depth" non-overlapping sets?

• Would mean that the only obstacles to partitioning are local...

Algorithm:

- Assigns labels 1, ... to the sets; same label \rightarrow non-overlapping
- 1. sort intervals by starting time: $I_1, I_2, ..., I_n$
- 2. **for** i = 1 **to** n **do**
- 3. assign smallest possible label to I_i (possible label: different from conflicting intervals I_j , j < i)
- 4. **end**

Interval Partitioning Algorithm

[•] Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

- a) Let *d* be the depth of the given set of intervals. The algorithm assigns a label from 1, ..., *d* to each interval.
- b) Sets with the same label are non-overlapping

Proof:

- b) holds by construction
- For a):
 - All intervals I_j , j < i overlapping with I_i , overlap at the beginning of I_i

- At most d - 1 such intervals \rightarrow some label in $\{1, \dots, d\}$ is available.

Input:

- Set *V* of *n* nodes (points, cities, locations, sites)
- Distance function $d: V \times V \rightarrow \mathbb{R}$, i.e., d(u, v): dist. from u to v
- Distances usually symmetric, asymm. distances \rightarrow asymm. TSP

Solution:

- Ordering/permutation v_1, v_2, \dots, v_n of nodes
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_n, v_1) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

• Minimize length of TSP path or TSP tour

Example

Nearest Neighbor (Greedy)

• Nearest neighbor can be arbitrarily bad, even for TSP paths

TSP Variants

- Asymmetric TSP
 - arbitrary non-negative distance/cost function
 - most general, nearest neighbor arbitrarily bad
 - NP-hard to get within any bound of optimum
- Symmetric TSP
 - arbitrary non-negative distance/cost function
 - nearest neighbor arbitrarily bad
 - NP-hard to get within any bound of optimum
- Metric TSP
 - distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u, v) \le d(u, w) + d(w, v)$
 - possible to get close to optimum (we will later see factor $\frac{3}{2}$)
 - what about the nearest neighbor algorithm?

Fabian Kuhn

Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
 - Cost of greedy edge \leq cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
 - At least half of the greedy edges get assigned
- At end of phase:
 - Remove points for which greedy edge is assigned Consider optimal solution for remaining points
- **Triangle inequality:** remaining opt. solution \leq overall opt. sol.
- Cost of greedy edges assigned in each phase ≤ opt. cost
- Number of phases $\leq \log_2 n$
 - +1 for last greedy edge in tour

- Assume: NN: cost of greedy tour, OPT: cost of optimal tour
- We have shown:

$$\frac{\mathrm{NN}}{\mathrm{OPT}} \le 1 + \log_2 n$$

- Example of an **approximation algorithm**
- We will later see a $3/_2$ -approximation algorithm for metric TSP

Back to Scheduling

• Given: *n* requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L
 - Schedule: s(i), f(i): start and finishing times of request iNote: $f(i) = s(i) + t_i$
- Lateness $L \coloneqq \max\left\{0, \max_{i}\{f(i) d_i\}\right\}$

largest amount of time by which some job finishes late

• Many other natural objective functions possible...

Algorithm Theory, WS 2016/17

Fabian Kuhn

BURG

Greedy Algorithm?

Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic...

Schedule by increasing slack time?

• Should be concerned about slack time: $d_i - t_i$

$$t_1 = 10$$
 deadline $d_1 = 10$
 $t_2 = 2$
 $d_2 = 3$

 Schedule:
 $t_1 = 10$
 $t_2 = 2$

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

- Assume jobs are reordered such that $d_1 \leq d_2 \leq \cdots \leq d_n$
- Start/finishing times:
 - First job starts at time s(1) = 0
 - Duration of job *i* is $t_i: f(i) = s(i) + t_i$
 - No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:

Schedule:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...
- 2. Inversion: Job *i* scheduled before job *j* if $d_i > d_j$ Schedules with no inversions have the same maximum lateness

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider optimal schedule \mathcal{O}' with no idle time
- If \mathcal{O}' has inversions, \exists pair (i, j), s.t. i is scheduled immediately before j and $d_j < d_i$

- Claim: Swapping *i* and *j* gives schedule with
 - 1. Less inversions
 - 2. Maximum lateness no larger than in \mathcal{O}'

Algorithm Theory, WS 2016/17

Fabian Kuhn

Earliest Deadline is Optimal

Claim: Swapping *i* and *j*: maximum lateness no larger than in O'