



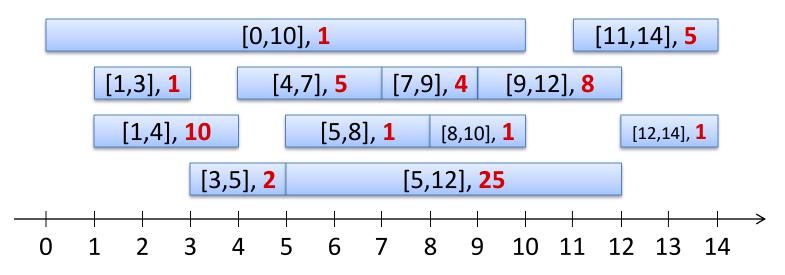
# Chapter 3 Dynamic Programming

# Algorithm Theory WS 2016/17

**Fabian Kuhn** 

## Weighted Interval Scheduling

- **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]
- Each interval has a weight w

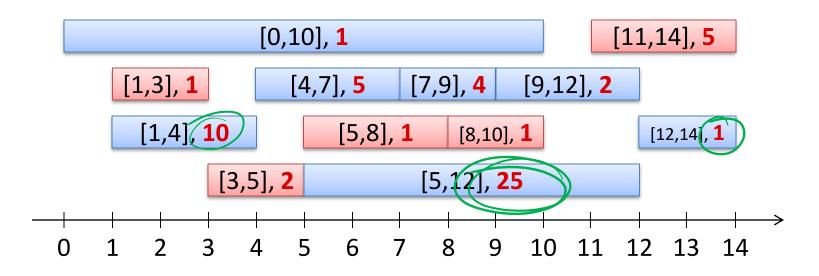


- Goal: Non-overlapping set of intervals of largest possible weight
  - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- **Example:** Intervals are room requests of different importance

UNI FREIBURG



#### Choose available request with earliest finishing time:

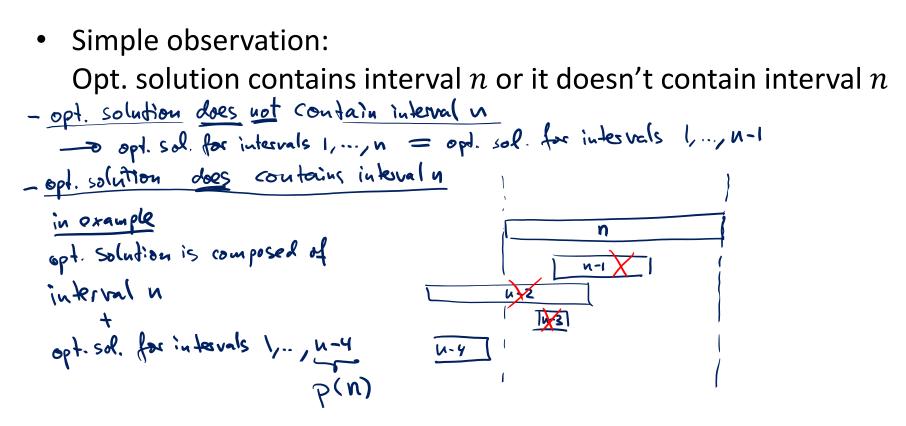


- Algorithm is not optimal any more
  - It can even be arbitrarily bad...
- No greedy algorithm known that works

### Solving Weighted Interval Scheduling



- Interval  $\underline{i}$ : start time  $\underline{s(i)}$ , finishing time:  $\underline{f(i)}$ , weight:  $\underline{w(i)}$
- Assume intervals 1, ..., *n* are sorted by increasing f(i)-  $0 < f(1) \le f(2) \le \cdots \le f(n)$ , for convenience: f(0) = 0



## Solving Weighted Interval Scheduling

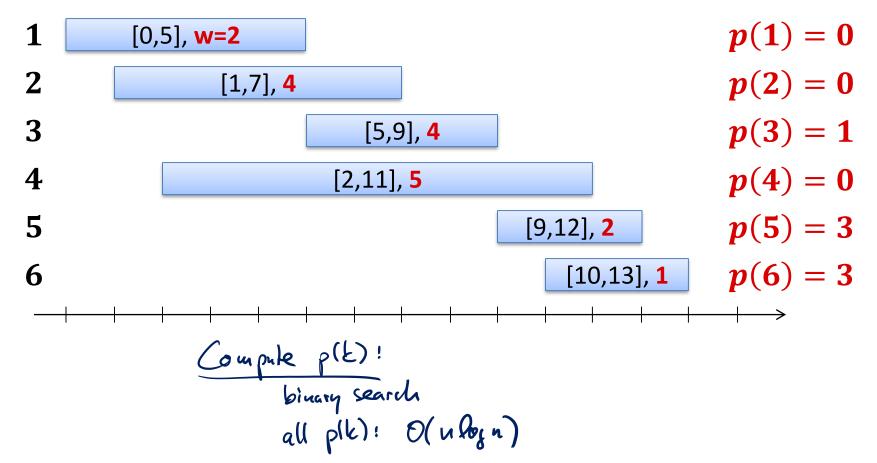


- Interval *i*: start time s(i), finishing time: f(i), weight: w(i)
- Assume intervals 1, ..., n are sorted by increasing f(i)-  $0 < f(1) \le f(2) \le \cdots \le f(n)$ , for convenience: f(0) = 0
- Simple observation:
   Opt. solution contains interval n or it doesn't contain interval n
- Opt. solution does not contain interval n: W(n) = W(n-1)Opt. solution contains interval n: W(n) = w(n) + W(p(n))Algorithm Theory, WS 2016/17 Fabian Kuhn

#### Example



Interval:



#### Algorithm Theory, WS 2016/17

#### **Recursive Definition of Optimal Solution**

- Recall:
  - W(k): weight of optimal solution with intervals 1, ..., k
  - p(k): last interval to finish before interval k starts
- Recursive definition of optimal weight:

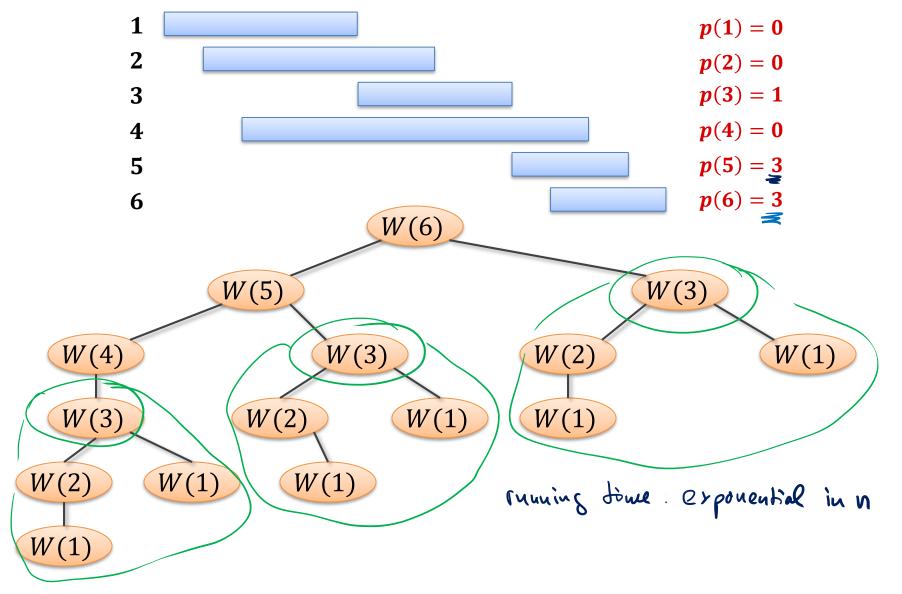
$$\forall k \geq 1: W(k) = \max\{W(k-1), w(k) + W(p(k))\}$$
$$\underbrace{W(1) = w(1)}_{/} \underbrace{\mathcal{O}(\mathfrak{o}) = \mathcal{O}}_{/}$$

Immediately gives a simple, recursive algorithm



#### Running Time of Recursive Algorithm





#### Memoizing the Recursion

- Running time of recursive algorithm: exponential!
- But, alg. only solves n different sub-problems:  $\underline{W(1)}, \dots, \underline{W(n)}$
- There is no need to compute them multiple times

#### Memoization: Store already computed values for future rec. calls

```
Compute p(k) for all k

>> memo = {};
W(k):
    if k in memo: return memo[k]
    if k == 4:
        x = w(x) 0
    else:
        x = max{W(k-1), w(k) + W(p(k))}

>> memo[k] = x
    return x
```