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Weighted Interval Scheduling

• Given: Set of intervals, e.g. 
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight 𝒘

• Goal: Non-overlapping set of intervals of largest possible weight
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests of different importance

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8
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Greedy Algorithms

Choose available request with earliest finishing time:

• Algorithm is not optimal any more
– It can even be arbitrarily bad…

• No greedy algorithm known that works
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Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛
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Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛

• Weight of optimal solution for only intervals 1,… , 𝑘: 𝑊 𝑘
Define 𝑝 𝑘 ≔ max 𝑖 ∈ 0,… , 𝑘 − 1 ∶ 𝑓 𝑖 ≤ 𝑠 𝑘

• Opt. solution does not contain interval 𝑛: 𝑾 𝒏 = 𝑾 𝒏− 𝟏

Opt. solution contains interval 𝑛: 𝑾 𝒏 = 𝒘 𝒏 +𝑾(𝒑 𝒏 )
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Example

[0,5], w=2

[1,7], 4

[5,9], 4

[10,13], 1

[2,11], 5

[9,12], 2

𝟏

Interval:

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑
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Recursive Definition of Optimal Solution

• Recall:
– 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘

– 𝑝 𝑘 : last interval to finish before interval 𝑘 starts

• Recursive definition of optimal weight:

∀𝑘 > 1: 𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘

𝑊 1 = 𝑤(1)

Immediately gives a simple, recursive algorithm

Compute p(k) values for all k

W(k):
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
return x
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Running Time of Recursive Algorithm
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Memoizing the Recursion

• Running time of recursive algorithm: exponential!

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛)

• There is no need to compute them multiple times

Memoization: Store already computed values for future rec. calls

Compute p(k) for all k

memo = {};

W(k):
if k in memo: return memo[k]
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
memo[k] = x
return x


