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Weighted Interval Scheduling

• Given: Set of intervals, e.g. 
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight 𝒘

• Goal: Non-overlapping set of intervals of largest possible weight
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests of different importance

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8
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Recursive Definition of Optimal Solution

• Recall:
– 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘

– 𝑝 𝑘 : last interval to finish before interval 𝑘 starts

• Recursive definition of optimal weight:

∀𝑘 > 1: 𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘

𝑊 1 = 𝑤(1)

Immediately gives a simple, recursive algorithm

Compute p(k) values for all k

W(k):
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
return x
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Running Time of Recursive Algorithm
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Memoizing the Recursion

• Running time of recursive algorithm: exponential!

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛)

• There is no need to compute them multiple times

Memoization: Store already computed values for future rec. calls

Compute p(k) for all k

memo = {};

W(k):
if k in memo: return memo[k]
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
memo[k] = x
return x
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Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems
has to be solved again

Weighted interval scheduling: subproblems 𝑊 1 ,𝑊 2 ,𝑊 3 ,…

runtime = #subproblems ⋅ time per subproblem

6

Dynamic Programming (DP)

DP ≈ Recursion + Memoization
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• Where das does the name come from?

• DP was developed by Richard E. Bellman in 1940s/1950s.

• In his autobiography, it says:
"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for 
multistage decision processes. … The 1950s were not good years for 
mathematical research. We had a very interesting gentleman in Washington 
named Wilson. He was Secretary of Defense, and he actually had a pathological 
fear and hatred of the word research. … His face would suffuse, he would turn 
red, and he would get violent if people used the term research in his presence. 
You can imagine how he felt, then, about the term mathematical. … Hence, I felt 
I had to do something to shield Wilson and the Air Force from the fact that I was 
really doing mathematics inside the RAND Corporation. What title, what name, 
could I choose? In the first place I was interested in planning, in decision making, 
in thinking. But planning, is not a good word for various reasons. I decided 
therefore to use the word “programming”. I wanted to get across the idea that 
this was dynamic, this was multistage, this was time-varying. … It also has a 
very interesting property as an adjective, and that it's impossible to use the 
word dynamic in a pejorative sense. … Thus, I thought dynamic programming 
was a good name. It was something not even a Congressman could object to. …“

7

DP: Some History …
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Example

Computing the schedule: store where you come from!

𝒘 = 𝟐

𝒘 = 𝟒

𝒘 = 𝟒

𝒘 = 𝟏

𝒘 = 𝟓

𝒘 = 𝟐

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝒘 = 𝟑𝟕 𝒑 𝟕 = 𝟓

𝒘 = 𝟔𝟖 𝒑 𝟖 = 𝟒

𝟎𝑾: 𝟐 𝟒 𝟔 𝟔 𝟖 𝟖 𝟏𝟏 𝟏𝟐

𝑊[0]𝑊[1]𝑊[2]𝑊[3]𝑊[4]𝑊[5]𝑊[6]𝑊[7]𝑊[8]
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Matrix-chain multiplication

Given: sequence (chain)  𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1  𝐴2 …  𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is 

• a single matrix 

• or the product of two fully parenthesized matrix products, 
surrounded by parentheses.
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All possible fully parenthesized matrix products of the chain 
𝐴1, 𝐴2, 𝐴3, 𝐴4:

( 𝐴1 ( 𝐴2 ( 𝐴3𝐴4 ) ) )

( 𝐴1 ( ( 𝐴2𝐴3 ) 𝐴4 ) )

( ( 𝐴1𝐴2 )( 𝐴3𝐴4 ) )

( ( 𝐴1 ( 𝐴2𝐴3 ) ) 𝐴4 )

( ( ( 𝐴1𝐴2 )𝐴3 ) 𝐴4 )

Example
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Different parenthesizations

Different parenthesizations correspond to different trees:

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4
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Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of 
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:

•

𝑃 1 = 1

𝑃 𝑛 = 

𝑘=1

𝑛−1

𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘) , for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛

≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!
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Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞
, 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟

, 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 = 

𝑘=1

𝑞

𝑎𝑖𝑘𝑏𝑘𝑗

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵

Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1  for 𝑖 ≔ 1 to 𝑝 do
2      for 𝑗 ≔ 1 to 𝑟 do
3           𝐶 𝑖, 𝑗 ≔ 0;
4           for 𝑘 ≔ 1 to 𝑞 do
5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑  𝒒  𝒓

Remark: 

Using this algorithm, multiplying 
two (𝑛  𝑛) matrices requires 𝑛3

multiplications. This can also be 
done using 𝑂(𝑛2.376)
multiplications.
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Matrix-chain multiplication: Example

Computation of the product 𝐴1𝐴2𝐴3 , where

𝐴1 : (50  5) matrix

𝐴2 : (5  100) matrix

𝐴3 : (100  10) matrix

a) Parenthesization ((𝐴1𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1𝐴2):                                 𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3:                                                𝐴1𝐴′′:

Sum:
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Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝑪 𝒂, 𝒃 = 𝒎𝒊𝒏

𝒂≤𝒌<𝒃
𝑪 𝒂, 𝒌 + 𝑪 𝒌 + 𝟏, 𝒃 + 𝒅𝒂−𝟏𝒅𝒌 𝒅𝒃

𝑪 𝒂, 𝒂 = 𝟎
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Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,5)

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3)𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3)𝐶(1,2) 𝐶(2,4)𝐶(2,3) 𝐶(2,3)𝐶(2,4) 𝐶(4,5)𝐶(3,5)

𝐶(4,5)𝐶(3,4)

𝐶(2,3)𝐶(1,2) 𝐶(3,4)𝐶(2,3) 𝐶(3,4)𝐶(2,3) 𝐶(4,5)𝐶(3,4)
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Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once  𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛) overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)
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Remarks about matrix-chain multiplication 

1. There is an algorithm that determines an optimal 
parenthesization in time 

𝑂 𝑛 ⋅ log 𝑛 .

2. There is a linear time algorithm that determines a 
parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.
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„Memoization“ for increasing the efficiency of a recursive solution:

• Only the first time a sub-problem is encountered, its solution is 
computed and then stored in a table. Each subsequent time that 
the subproblem is encountered, the value stored in the table is 
simply looked up and returned

(without repeated computation!).

• Computing the solution: For each sub-problem, store how the 
value is obtained (according to which recursive rule).

Dynamic Programming
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Dynamic Programming

Dynamic programming / memoization can be applied if

• Optimal solution contains optimal solutions to sub-problems
(recursive structure)

• Number of sub-problems that need to be considered is small
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Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 and value 𝑣𝑖
• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at 
most 𝑊 and total value is maximized:

max

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and 

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊
time units, try to execute a set of jobs that maximizes the 
total value
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Recursive Structure?

• Optimal solution: 𝒪

• If 𝑛 ∉ 𝒪: OPT 𝑛 = OPT 𝑛 − 1

• What if 𝑛 ∈ 𝒪?
– Taking 𝑛 gives value 𝑣𝑛
– But, 𝑛 also occupies space 𝑤𝑛 in the bag (knapsack)

– There is space for 𝑊 −𝑤𝑛 total weight left!

OPT 𝑛 = 𝑤𝑛 + optimal solution with first 𝑛 − 1 items
and knapsack of capacity 𝑊 − 𝑤𝑛
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A More Complicated Recursion

𝐎𝐏𝐓(𝒌, 𝒙): value of optimal solution with items 1,… , 𝑘
and knapsack of capacity 𝑥

Recursion:
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Dynamic Programming Algorithm

Set up table for all possible OPT(𝑘, 𝑥)-values

• Assume that all weights 𝑤𝑖 are integers!

𝟎

𝟏

𝟐

⋮

𝒏

𝟎 𝟏 𝟐 ⋮ 𝑾
Row 𝒊, column 𝒋:

𝑶𝑷𝑻(𝒊, 𝒋)

𝟑

𝟑
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Example

• 8 items: 3,2 , 2,4 , 4,1 , 5,6 , 3,3 , 4,3 , 5, 4 , 6,6
Knapsack capacity: 12

• 𝑶𝑷𝑻 𝒌, 𝒙 = 𝐦𝐚𝐱 𝑶𝑷𝑻 𝒌 − 𝟏, 𝒙 , 𝑶𝑷𝑻 𝒌 − 𝟏, 𝒙 − 𝒘𝒌 + 𝒗𝒌

weight value

𝟏

𝟐

𝟑

𝟖

𝟏 𝟐 𝟑 𝟏𝟐𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏

𝟒

𝟓

𝟔

𝟕
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Running Time of Knapsack Algorithm

• Size of table: 𝑂(𝑛 ⋅ 𝑊)

• Time per table entry: 𝑂(1) overall time: 𝑶(𝒏𝑾)

• Computing solution (set of items to pick):
Follow ≤ 𝑛 arrows  𝑂 𝑛 time (after filling table)

• Note: Time depends on 𝑊 can be exponential in 𝑛…

• And it is problematic if weights are not integers.
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m a t h e m a t i c i a n

String Matching Problems

Edit distance:

• For two given strings 𝐴 and 𝐵, efficiently compute the

edit distance 𝑫(𝑨,𝑩) (# edit operations to transform 𝐴 into 𝐵)

as well as a minimum sequence of edit operations that 
transform 𝐴 into 𝐵.

• Example: mathematician multiplication:

u i p l o

l i c
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Edit Distance

Given: Two strings 𝐴 = 𝑎1𝑎2…𝑎𝑚 and 𝐵 = 𝑏1𝑏2…𝑏𝑛

Goal: Determine the minimum number 𝐷(𝐴, 𝐵) of edit 
operations required to transform 𝐴 into 𝐵

Edit operations:

a) Replace a character from string 𝐴 by a character from 𝐵

b) Delete a character from string 𝐴

c) Insert a character from string 𝐵 into 𝐴

m a – t h e m - - a t i c i a n 

m u l t i p l i c a t i o - - n
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Edit Distance – Cost Model

• Cost for replacing character 𝑎 by 𝑏: 𝒄 𝒂, 𝒃 ≥ 𝟎

• Capture insert, delete by allowing 𝑎 = 𝜀 or 𝑏 = 𝜀:
– Cost for deleting character 𝑎:  𝒄(𝒂, 𝜺)

– Cost for inserting character 𝑏: 𝒄(𝜺, 𝒃)

• Triangle inequality:

𝑐 𝑎, 𝑐 ≤ 𝑐 𝑎, 𝑏 + 𝑐 𝑏, 𝑐

 each character is changed at most once!

• Unit cost model: 𝑐 𝑎, 𝑏 = ቊ
1, if 𝑎 ≠ 𝑏
0, if 𝑎 = 𝑏
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Recursive Structure

• Optimal “alignment” of strings (unit cost model)

bbcadfagikccm and   abbagflrgikacc :

- b b c a g f a – g i k - c c m

a b b – a d f l r g i k a c c –

• Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa –gik-ccm

abb-adfl rgikacc-

• Edit distance between 𝐴1,𝑚 = 𝑎1…𝑎𝑚 and 𝐵1,𝑛 = 𝑏1…𝑏𝑛:

𝐷 𝐴, 𝐵 = min
𝑘,ℓ

𝐷 𝐴1,𝑘 , 𝐵1,ℓ + 𝐷 𝐴𝑘+1,𝑚, 𝐵ℓ+1,𝑛

and
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Computation of the Edit Distance

Let 𝐴𝑘 ≔ 𝑎1…𝑎𝑘 ,  𝐵ℓ ≔ 𝑏1…𝑏ℓ , and

𝐷𝑘,ℓ ≔ 𝐷 𝐴𝑘 , 𝐵ℓ

𝐴

𝐵
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Computation of the Edit Distance

Three ways of ending an “alignment” between 𝐴𝑘 and 𝐵ℓ:

1. 𝑎𝑘 is replaced by 𝑏ℓ:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ

2. 𝑎𝑘 is deleted:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

3. 𝑏ℓ is inserted:

𝐷𝑘,ℓ = 𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ
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Computing the Edit Distance

• Recurrence relation (for 𝑘, ℓ ≥ 1)

𝐷𝑘,ℓ = min

𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ
𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ

=min

𝐷𝑘−1,ℓ−1 + 1 / 0

𝐷𝑘−1,ℓ + 1

𝐷𝑘,ℓ−1 + 1

• Need to compute 𝐷𝑖,𝑗 for all 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ ℓ:

unit cost model

𝑫𝒌−𝟏,ℓ−𝟏 𝑫𝒌−𝟏,ℓ

𝑫𝒌,ℓ−𝟏 𝑫𝒌,ℓ

+𝟏

+𝟏

+𝟏 / 𝟎
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Recurrence Relation for the Edit Distance

Base cases:

𝑫𝟎,𝟎 = 𝑫 𝜺, 𝜺 = 𝟎

𝑫𝟎,𝒋 = 𝑫 𝜺,𝑩𝒋 = 𝑫𝟎,𝒋−𝟏 + 𝒄 𝜺, 𝒃𝒋
𝑫𝒊,𝟎 = 𝑫 𝑨𝒊, 𝜺 = 𝑫𝒊−𝟏,𝟎 + 𝒄 𝒂𝒊, 𝜺

Recurrence relation:

𝑫𝒊,𝒋 = 𝐦𝐢𝐧

𝑫𝒌−𝟏,ℓ−𝟏 + 𝒄 𝒂𝒌, 𝒃ℓ
𝑫𝒌−𝟏,ℓ + 𝒄 𝒂𝒌, 𝜺

𝑫𝒌,ℓ−𝟏 + 𝒄 𝜺, 𝒃ℓ
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Order of solving the subproblems

𝑏1 𝑏2 𝑏3 𝑏4 … 𝑏𝑛

𝑎1

𝑎𝑚

𝐷𝑖,𝑗−1

𝐷𝑖,𝑗

𝐷𝑖−1,𝑗−1

𝐷𝑖−1,𝑗

𝑎2
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Algorithm for Computing the Edit Distance

Algorithm Edit-Distance

Input: 2 strings 𝐴 = 𝑎1…𝑎𝑚 and 𝐵 = 𝑏1…𝑏𝑛

Output: matrix 𝐷 = 𝐷𝑖𝑗

1 𝐷 0,0 ≔ 0;

2 for 𝑖 ≔ 1 to 𝑚 do 𝐷 𝑖, 0 ≔ 𝑖;

3 for 𝑗 ≔ 1 to 𝑛 do 𝐷 0, 𝑗 ≔ 𝑗;

4 for 𝑖 ≔ 1 to 𝑚 do 

5 for 𝑗 ≔ 1 to 𝑛 do 

6 𝐷 𝑖, 𝑗 ≔ min

𝐷 𝑖 − 1, 𝑗 + 1

𝐷 𝑖, 𝑗 − 1 + 1

𝐷 𝑖 − 1, 𝑗 − 1 + 𝑐 𝑎𝑖 , 𝑏𝑗

;
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Example

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂
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Computing the Edit Operations

Algorithm Edit-Operations(𝑖, 𝑗)
Input: matrix 𝐷 (already computed)
Output: list of edit operations

1   if 𝑖 = 0 and 𝑗 = 0 then return empty list

2 if 𝑖 ≠ 0 and 𝐷 𝑖, 𝑗 = 𝐷 𝑖 − 1, 𝑗 + 1 then
3 return Edit-Operations(𝑖 − 1, 𝑗) ∘ „delete 𝑎𝑖“

4   else if 𝑗 ≠ 0 and 𝐷 𝑖, 𝑗 = 𝐷 𝑖, 𝑗 − 1 + 1 then
5       return Edit-Operations(𝑖, 𝑗 − 1) ∘ „insert 𝑏𝑗“

6   else // 𝐷 𝑖, 𝑗 = 𝐷 𝑖 − 1, 𝑗 − 1 + 𝑐(𝑎𝑖 , 𝑏𝑗)
7 if 𝑎𝑖 = 𝑏𝑖 then return Edit-Operations(𝑖 − 1, 𝑗 − 1)
8       else return Edit-Operations(𝑖 − 1, 𝑗 − 1) ∘ „replace 𝑎𝑖 by 𝑏𝑗“

Initial call: Edit-Operations(m,n)



Algorithm Theory, WS 2016/17 Fabian Kuhn 40

Edit Operations

0 1

1 1

2 1

3 2

2 3

1 2

4 5

3 4

2 2

1 2

4 3

5 4

2 2

3 3

3 3

3 4

3 4

3 3

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂
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Edit Distance: Summary

• Edit distance between two strings of length 𝑚 and 𝑛 can be 
computed in 𝑂 𝑚𝑛 time.

• Obtain the edit operations:
– for each cell, store which rule(s) apply to fill the cell

– track path backwards from cell (𝑚, 𝑛)

– can also be used to get all optimal “alignments”

• Unit cost model: 
– interesting special case

– each edit operation costs 1


