
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Weighted Interval Scheduling

• Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight 𝒘

• Goal: Non-overlapping set of intervals of largest possible weight
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests of different importance

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Recursive Definition of Optimal Solution

• Recall:
– 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘

– 𝑝 𝑘 : last interval to finish before interval 𝑘 starts

• Recursive definition of optimal weight:

∀𝑘 > 1: 𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘

𝑊 1 = 𝑤(1)

Immediately gives a simple, recursive algorithm

Compute p(k) values for all k

W(k):
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
return x

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Running Time of Recursive Algorithm

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝑊(6)

𝑊(5) 𝑊(3)

𝑊(4) 𝑊(3) 𝑊(2) 𝑊(1)

𝑊(3)

𝑊(2)

𝑊(1)

𝑊(1)

𝑊(2) 𝑊(1) 𝑊(1)

𝑊(1)

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Memoizing the Recursion

• Running time of recursive algorithm: exponential!

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛)

• There is no need to compute them multiple times

Memoization: Store already computed values for future rec. calls

Compute p(k) for all k

memo = {};

W(k):
if k in memo: return memo[k]
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
memo[k] = x
return x

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems
has to be solved again

Weighted interval scheduling: subproblems 𝑊 1 ,𝑊 2 ,𝑊 3 ,…

runtime = #subproblems ⋅ time per subproblem

6

Dynamic Programming (DP)

DP ≈ Recursion + Memoization

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

• Where das does the name come from?

• DP was developed by Richard E. Bellman in 1940s/1950s.

• In his autobiography, it says:
"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for
multistage decision processes. … The 1950s were not good years for
mathematical research. We had a very interesting gentleman in Washington
named Wilson. He was Secretary of Defense, and he actually had a pathological
fear and hatred of the word research. … His face would suffuse, he would turn
red, and he would get violent if people used the term research in his presence.
You can imagine how he felt, then, about the term mathematical. … Hence, I felt
I had to do something to shield Wilson and the Air Force from the fact that I was
really doing mathematics inside the RAND Corporation. What title, what name,
could I choose? In the first place I was interested in planning, in decision making,
in thinking. But planning, is not a good word for various reasons. I decided
therefore to use the word “programming”. I wanted to get across the idea that
this was dynamic, this was multistage, this was time-varying. … It also has a
very interesting property as an adjective, and that it's impossible to use the
word dynamic in a pejorative sense. … Thus, I thought dynamic programming
was a good name. It was something not even a Congressman could object to. …“

7

DP: Some History …

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Example

Computing the schedule: store where you come from!

𝒘 = 𝟐

𝒘 = 𝟒

𝒘 = 𝟒

𝒘 = 𝟏

𝒘 = 𝟓

𝒘 = 𝟐

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝒘 = 𝟑𝟕 𝒑 𝟕 = 𝟓

𝒘 = 𝟔𝟖 𝒑 𝟖 = 𝟒

𝟎𝑾: 𝟐 𝟒 𝟔 𝟔 𝟖 𝟖 𝟏𝟏 𝟏𝟐

𝑊[0]𝑊[1]𝑊[2]𝑊[3]𝑊[4]𝑊[5]𝑊[6]𝑊[7]𝑊[8]

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Matrix-chain multiplication

Given: sequence (chain) 𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1 𝐴2 … 𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

• a single matrix

• or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

All possible fully parenthesized matrix products of the chain
𝐴1, 𝐴2, 𝐴3, 𝐴4:

(𝐴1 (𝐴2 (𝐴3𝐴4)))

(𝐴1 ((𝐴2𝐴3) 𝐴4))

((𝐴1𝐴2)(𝐴3𝐴4))

((𝐴1 (𝐴2𝐴3)) 𝐴4)

(((𝐴1𝐴2)𝐴3) 𝐴4)

Example

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Different parenthesizations

Different parenthesizations correspond to different trees:

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:

•

𝑃 1 = 1

𝑃 𝑛 =

𝑘=1

𝑛−1

𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘) , for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛

≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞
, 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟

, 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 =

𝑘=1

𝑞

𝑎𝑖𝑘𝑏𝑘𝑗

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵

Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1 for 𝑖 ≔ 1 to 𝑝 do
2 for 𝑗 ≔ 1 to 𝑟 do
3 𝐶 𝑖, 𝑗 ≔ 0;
4 for 𝑘 ≔ 1 to 𝑞 do
5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑 𝒒 𝒓

Remark:

Using this algorithm, multiplying
two (𝑛 𝑛) matrices requires 𝑛3

multiplications. This can also be
done using 𝑂(𝑛2.376)
multiplications.

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Matrix-chain multiplication: Example

Computation of the product 𝐴1𝐴2𝐴3 , where

𝐴1 : (50 5) matrix

𝐴2 : (5 100) matrix

𝐴3 : (100 10) matrix

a) Parenthesization ((𝐴1𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1𝐴2): 𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3: 𝐴1𝐴′′:

Sum:

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝑪 𝒂, 𝒃 = 𝒎𝒊𝒏

𝒂≤𝒌<𝒃
𝑪 𝒂, 𝒌 + 𝑪 𝒌 + 𝟏, 𝒃 + 𝒅𝒂−𝟏𝒅𝒌 𝒅𝒃

𝑪 𝒂, 𝒂 = 𝟎

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,5)

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3)𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3)𝐶(1,2) 𝐶(2,4)𝐶(2,3) 𝐶(2,3)𝐶(2,4) 𝐶(4,5)𝐶(3,5)

𝐶(4,5)𝐶(3,4)

𝐶(2,3)𝐶(1,2) 𝐶(3,4)𝐶(2,3) 𝐶(3,4)𝐶(2,3) 𝐶(4,5)𝐶(3,4)

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once 𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛) overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal
parenthesization in time

𝑂 𝑛 ⋅ log 𝑛 .

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

„Memoization“ for increasing the efficiency of a recursive solution:

• Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

• Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Dynamic Programming

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Dynamic Programming

Dynamic programming / memoization can be applied if

• Optimal solution contains optimal solutions to sub-problems
(recursive structure)

• Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 and value 𝑣𝑖
• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at
most 𝑊 and total value is maximized:

max

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊
time units, try to execute a set of jobs that maximizes the
total value

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Recursive Structure?

• Optimal solution: 𝒪

• If 𝑛 ∉ 𝒪: OPT 𝑛 = OPT 𝑛 − 1

• What if 𝑛 ∈ 𝒪?
– Taking 𝑛 gives value 𝑣𝑛
– But, 𝑛 also occupies space 𝑤𝑛 in the bag (knapsack)

– There is space for 𝑊 −𝑤𝑛 total weight left!

OPT 𝑛 = 𝑤𝑛 + optimal solution with first 𝑛 − 1 items
and knapsack of capacity 𝑊 − 𝑤𝑛

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

A More Complicated Recursion

𝐎𝐏𝐓(𝒌, 𝒙): value of optimal solution with items 1,… , 𝑘
and knapsack of capacity 𝑥

Recursion:

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Dynamic Programming Algorithm

Set up table for all possible OPT(𝑘, 𝑥)-values

• Assume that all weights 𝑤𝑖 are integers!

𝟎

𝟏

𝟐

⋮

𝒏

𝟎 𝟏 𝟐 ⋮ 𝑾
Row 𝒊, column 𝒋:

𝑶𝑷𝑻(𝒊, 𝒋)

𝟑

𝟑

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Example

• 8 items: 3,2 , 2,4 , 4,1 , 5,6 , 3,3 , 4,3 , 5, 4 , 6,6
Knapsack capacity: 12

• 𝑶𝑷𝑻 𝒌, 𝒙 = 𝐦𝐚𝐱 𝑶𝑷𝑻 𝒌 − 𝟏, 𝒙 , 𝑶𝑷𝑻 𝒌 − 𝟏, 𝒙 − 𝒘𝒌 + 𝒗𝒌

weight value

𝟏

𝟐

𝟑

𝟖

𝟏 𝟐 𝟑 𝟏𝟐𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏

𝟒

𝟓

𝟔

𝟕

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Running Time of Knapsack Algorithm

• Size of table: 𝑂(𝑛 ⋅ 𝑊)

• Time per table entry: 𝑂(1) overall time: 𝑶(𝒏𝑾)

• Computing solution (set of items to pick):
Follow ≤ 𝑛 arrows 𝑂 𝑛 time (after filling table)

• Note: Time depends on 𝑊 can be exponential in 𝑛…

• And it is problematic if weights are not integers.

Algorithm Theory, WS 2016/17 Fabian Kuhn 27

m a t h e m a t i c i a n

String Matching Problems

Edit distance:

• For two given strings 𝐴 and 𝐵, efficiently compute the

edit distance 𝑫(𝑨,𝑩) (# edit operations to transform 𝐴 into 𝐵)

as well as a minimum sequence of edit operations that
transform 𝐴 into 𝐵.

• Example: mathematician multiplication:

u i p l o

l i c

Algorithm Theory, WS 2016/17 Fabian Kuhn 29

Edit Distance

Given: Two strings 𝐴 = 𝑎1𝑎2…𝑎𝑚 and 𝐵 = 𝑏1𝑏2…𝑏𝑛

Goal: Determine the minimum number 𝐷(𝐴, 𝐵) of edit
operations required to transform 𝐴 into 𝐵

Edit operations:

a) Replace a character from string 𝐴 by a character from 𝐵

b) Delete a character from string 𝐴

c) Insert a character from string 𝐵 into 𝐴

m a – t h e m - - a t i c i a n

m u l t i p l i c a t i o - - n

Algorithm Theory, WS 2016/17 Fabian Kuhn 30

Edit Distance – Cost Model

• Cost for replacing character 𝑎 by 𝑏: 𝒄 𝒂, 𝒃 ≥ 𝟎

• Capture insert, delete by allowing 𝑎 = 𝜀 or 𝑏 = 𝜀:
– Cost for deleting character 𝑎: 𝒄(𝒂, 𝜺)

– Cost for inserting character 𝑏: 𝒄(𝜺, 𝒃)

• Triangle inequality:

𝑐 𝑎, 𝑐 ≤ 𝑐 𝑎, 𝑏 + 𝑐 𝑏, 𝑐

 each character is changed at most once!

• Unit cost model: 𝑐 𝑎, 𝑏 = ቊ
1, if 𝑎 ≠ 𝑏
0, if 𝑎 = 𝑏

Algorithm Theory, WS 2016/17 Fabian Kuhn 31

Recursive Structure

• Optimal “alignment” of strings (unit cost model)

bbcadfagikccm and abbagflrgikacc :

- b b c a g f a – g i k - c c m

a b b – a d f l r g i k a c c –

• Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa –gik-ccm

abb-adfl rgikacc-

• Edit distance between 𝐴1,𝑚 = 𝑎1…𝑎𝑚 and 𝐵1,𝑛 = 𝑏1…𝑏𝑛:

𝐷 𝐴, 𝐵 = min
𝑘,ℓ

𝐷 𝐴1,𝑘 , 𝐵1,ℓ + 𝐷 𝐴𝑘+1,𝑚, 𝐵ℓ+1,𝑛

and

Algorithm Theory, WS 2016/17 Fabian Kuhn 32

Computation of the Edit Distance

Let 𝐴𝑘 ≔ 𝑎1…𝑎𝑘 , 𝐵ℓ ≔ 𝑏1…𝑏ℓ , and

𝐷𝑘,ℓ ≔ 𝐷 𝐴𝑘 , 𝐵ℓ

𝐴

𝐵

Algorithm Theory, WS 2016/17 Fabian Kuhn 33

Computation of the Edit Distance

Three ways of ending an “alignment” between 𝐴𝑘 and 𝐵ℓ:

1. 𝑎𝑘 is replaced by 𝑏ℓ:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ

2. 𝑎𝑘 is deleted:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

3. 𝑏ℓ is inserted:

𝐷𝑘,ℓ = 𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ

Algorithm Theory, WS 2016/17 Fabian Kuhn 34

Computing the Edit Distance

• Recurrence relation (for 𝑘, ℓ ≥ 1)

𝐷𝑘,ℓ = min

𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ
𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ

=min

𝐷𝑘−1,ℓ−1 + 1 / 0

𝐷𝑘−1,ℓ + 1

𝐷𝑘,ℓ−1 + 1

• Need to compute 𝐷𝑖,𝑗 for all 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ ℓ:

unit cost model

𝑫𝒌−𝟏,ℓ−𝟏 𝑫𝒌−𝟏,ℓ

𝑫𝒌,ℓ−𝟏 𝑫𝒌,ℓ

+𝟏

+𝟏

+𝟏 / 𝟎

Algorithm Theory, WS 2016/17 Fabian Kuhn 35

Recurrence Relation for the Edit Distance

Base cases:

𝑫𝟎,𝟎 = 𝑫 𝜺, 𝜺 = 𝟎

𝑫𝟎,𝒋 = 𝑫 𝜺,𝑩𝒋 = 𝑫𝟎,𝒋−𝟏 + 𝒄 𝜺, 𝒃𝒋
𝑫𝒊,𝟎 = 𝑫 𝑨𝒊, 𝜺 = 𝑫𝒊−𝟏,𝟎 + 𝒄 𝒂𝒊, 𝜺

Recurrence relation:

𝑫𝒊,𝒋 = 𝐦𝐢𝐧

𝑫𝒌−𝟏,ℓ−𝟏 + 𝒄 𝒂𝒌, 𝒃ℓ
𝑫𝒌−𝟏,ℓ + 𝒄 𝒂𝒌, 𝜺

𝑫𝒌,ℓ−𝟏 + 𝒄 𝜺, 𝒃ℓ

Algorithm Theory, WS 2016/17 Fabian Kuhn 36

Order of solving the subproblems

𝑏1 𝑏2 𝑏3 𝑏4 … 𝑏𝑛

𝑎1

𝑎𝑚

𝐷𝑖,𝑗−1

𝐷𝑖,𝑗

𝐷𝑖−1,𝑗−1

𝐷𝑖−1,𝑗

𝑎2

Algorithm Theory, WS 2016/17 Fabian Kuhn 37

Algorithm for Computing the Edit Distance

Algorithm Edit-Distance

Input: 2 strings 𝐴 = 𝑎1…𝑎𝑚 and 𝐵 = 𝑏1…𝑏𝑛

Output: matrix 𝐷 = 𝐷𝑖𝑗

1 𝐷 0,0 ≔ 0;

2 for 𝑖 ≔ 1 to 𝑚 do 𝐷 𝑖, 0 ≔ 𝑖;

3 for 𝑗 ≔ 1 to 𝑛 do 𝐷 0, 𝑗 ≔ 𝑗;

4 for 𝑖 ≔ 1 to 𝑚 do

5 for 𝑗 ≔ 1 to 𝑛 do

6 𝐷 𝑖, 𝑗 ≔ min

𝐷 𝑖 − 1, 𝑗 + 1

𝐷 𝑖, 𝑗 − 1 + 1

𝐷 𝑖 − 1, 𝑗 − 1 + 𝑐 𝑎𝑖 , 𝑏𝑗

;

Algorithm Theory, WS 2016/17 Fabian Kuhn 38

Example

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂

Algorithm Theory, WS 2016/17 Fabian Kuhn 39

Computing the Edit Operations

Algorithm Edit-Operations(𝑖, 𝑗)
Input: matrix 𝐷 (already computed)
Output: list of edit operations

1 if 𝑖 = 0 and 𝑗 = 0 then return empty list

2 if 𝑖 ≠ 0 and 𝐷 𝑖, 𝑗 = 𝐷 𝑖 − 1, 𝑗 + 1 then
3 return Edit-Operations(𝑖 − 1, 𝑗) ∘ „delete 𝑎𝑖“

4 else if 𝑗 ≠ 0 and 𝐷 𝑖, 𝑗 = 𝐷 𝑖, 𝑗 − 1 + 1 then
5 return Edit-Operations(𝑖, 𝑗 − 1) ∘ „insert 𝑏𝑗“

6 else // 𝐷 𝑖, 𝑗 = 𝐷 𝑖 − 1, 𝑗 − 1 + 𝑐(𝑎𝑖 , 𝑏𝑗)
7 if 𝑎𝑖 = 𝑏𝑖 then return Edit-Operations(𝑖 − 1, 𝑗 − 1)
8 else return Edit-Operations(𝑖 − 1, 𝑗 − 1) ∘ „replace 𝑎𝑖 by 𝑏𝑗“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2016/17 Fabian Kuhn 40

Edit Operations

0 1

1 1

2 1

3 2

2 3

1 2

4 5

3 4

2 2

1 2

4 3

5 4

2 2

3 3

3 3

3 4

3 4

3 3

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂

Algorithm Theory, WS 2016/17 Fabian Kuhn 41

Edit Distance: Summary

• Edit distance between two strings of length 𝑚 and 𝑛 can be
computed in 𝑂 𝑚𝑛 time.

• Obtain the edit operations:
– for each cell, store which rule(s) apply to fill the cell

– track path backwards from cell (𝑚, 𝑛)

– can also be used to get all optimal “alignments”

• Unit cost model:
– interesting special case

– each edit operation costs 1

