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Amortization
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* Consider sequence 04, 0, ..., 0, of n operations
(typically performed on some data structure D)

* ;: execution time of operation o;
e T:=1t4+t, + -+ t,: total execution time

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive
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Analysis of Algorithms
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e Amortized worst case

What is the average cost of an operation
in a worst case sequence of operations?
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Example 1: Augmented Stack
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Stack Data Type: Operations

 S.push(x) :inserts x on top of stack " gﬂ
* S.pop() : removes and returns top element g

Complexity of Stack Operations
* In all standard implementations: O(1) \

Additional Operation
* S.multipop(k) : remove and return top k elements
* Complexity: 0 (k) k

 What is the amortized complexity of these operations?
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Augmented Stack: Amortized Cost
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Amortized Cost
 Sequence of operationsi =1,2,3,...,n

* Actual cost of op. i: ¢;
* Amortized cost of op. i is a; if for every possible seq. of op.,

n = n
=1 =1

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actual cost t; = 0(1)
« S.multipop(k) : actual cost t; = 0(k)

 Amortized cost of all three operations is constant

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push
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Augmented Stack: Amortized Cost
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Actual Cost of Augmented Stack Operations

Amortized Cost

« S.push(x), S.pop(): actualcostt; < c

« S.multipop(k) actualcostt; < c-k
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Example 2: Binary Counter
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Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
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Accounting Method
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Observation:
* Eachincrement flips exactlyoneOintoa 1

0010001111 = 0010010000

Idea:
* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x
* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost:%)
* Flip from ] to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!
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Accounting Method

Op. | Counter | Cost To Bank | From Bank Net Cost Credit
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Potential Function Method
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* Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

» State of data structure / system: S € § (state space)

Potential function ®:8 - R S‘%;‘& slale (Q‘..Pb data sh.)

* Operation i: &, d7(807= O

— t;: actual cost of operation i

— .'S:L state after execution of operation i (Sj: initial state)
— ®; = P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_,4
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Potential Function Method
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Operation i: 24 < 2« Ai’
actual cost: t; amortized cost: a; = t; + &; — D;_4
Overall cost: o
n n (uf) A?)
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Binary Counter: Potential Method
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Potential function:
&: number of ones in current counter

Clearly, &y = 0and ®; = Oforalli = 0

Actual cost t;:
= 1 flipfromOto1l

T

= t; — 1flipsfrom1toO

ANy

Potential difference: ®; — ®;_;, =1—-(t; — 1) = 2 — t;

R e N ——

Amortized cost: a; = t; + ; —D;_; = 2
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Example 3: Dynamic Array
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* How to create an array where the size dynamically adapts to the
number of elements stored?
— e.g., Java “ArrayList” or Python “list”

Implementation: ——

* [Initialize with initial size N, e =

—_—

* Assumptions: Array can only grow by appending new elements
at the end

* |farrayis full, the size of the array is increased by a factor § > 1

K
Operations (array of size N): — ‘
* read / write: actual cost 0((1) | ey -

* append: actual cost is O(1) if array is not full, otherwise
the append cost is O(S - N) (new array size)
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Example 3: Dynamic Array
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Notation:
* n number of elements stored

 N:currentsize of array
=

_ _ | 1 ifn<N
Cost t; ofﬁ‘ append operation: t; = {/3 N if:’lz - N

——

Claim: Amortized append cost is O(1)

Potential function ®?
* should allow to pay expensive append operations by cheap ones
 when array is full, ® has to be large

 immediately after increasing the size of the array, ® should be
small again
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1 ifn< N

Cost t; of it" append operation: t; = {,3 N ifn=N
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Dynamic Array: Amortized Cost
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1 ifn< N

Cost t; of it" append operation: t; = {,3 N ifn=N
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