
Chapter 4

Amortized Analysis

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Amortization

• Consider sequence 𝑜1, 𝑜2, … , 𝑜𝑛 of 𝑛 operations
(typically performed on some data structure 𝐷)

• 𝒕𝒊: execution time of operation 𝑜𝑖
• 𝑻 ≔ 𝒕𝟏 + 𝒕𝟐 +⋯+ 𝒕𝒏: total execution time

• The execution time of a single operation might

vary within a large range (e.g., 𝑡𝑖 ∈ [1, 𝑂 𝑖])

• The worst case overall execution time might still be small

 average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Analysis of Algorithms

• Best case

• Worst case

• Average case

• Amortized worst case

What is the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Example 1: Augmented Stack

Stack Data Type: Operations

• 𝑆. push(𝑥) : inserts 𝑥 on top of stack

• 𝑆.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: 𝑂 1

Additional Operation

• 𝑺.multipop(𝒌) : remove and return top 𝑘 elements

• Complexity: 𝑂 𝑘

• What is the amortized complexity of these operations?

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Augmented Stack: Amortized Cost

Amortized Cost

• Sequence of operations 𝑖 = 1, 2, 3,… , 𝑛

• Actual cost of op. 𝑖: 𝒕𝒊
• Amortized cost of op. 𝑖 is 𝒂𝒊 if for every possible seq. of op.,

𝑇 =෍

𝑖=1

𝑛

𝑡𝑖 ≤෍

𝑖=1

𝑛

𝑎𝑖

Actual Cost of Augmented Stack Operations

• 𝑆. push 𝑥 , 𝑆. pop(): actual cost 𝑡𝑖 = 𝑂(1)

• 𝑆.multipop 𝑘 : actual cost 𝑡𝑖 = 𝑂 𝑘

• Amortized cost of all three operations is constant
– The total number of “popped” elements cannot be more than the total

number of “pushed” elements: cost for pop/multipop ≤ cost for push

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Augmented Stack: Amortized Cost

Amortized Cost

𝑇 =෍

𝑖

𝑡𝑖 ≤෍

𝑖

𝑎𝑖

Actual Cost of Augmented Stack Operations

• 𝑆. push 𝑥 , 𝑆. pop(): actual cost 𝑡𝑖 ≤ 𝑐

• 𝑆.multipop 𝑘 : actual cost 𝑡𝑖 ≤ 𝑐 ⋅ 𝑘

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:
Operation Counter Value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111 1

8 01000 4

9 01001 1

10 01010 2

11 01011 1

12 01100 3

13 01101 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Accounting Method

Observation:

• Each increment flips exactly one 0 into a 1

00100𝟎1111 ⟹ 00100𝟏0000

Idea:

• Have a bank account (with initial amount 0)

• Paying 𝑥 to the bank account costs 𝑥

• Take “money” from account to pay for expensive operations

Applied to binary counter:

• Flip from 0 to 1: pay 1 to bank account (cost: 2)

• Flip from 1 to 0: take 1 from bank account (cost: 0)

• Amount on bank account = number of ones
 We always have enough “money” to pay!

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Accounting Method

Op. Counter Cost To Bank From Bank Net Cost Credit

0 0 0 0 0

1 0 0 0 0 1 1

2 0 0 0 1 0 2

3 0 0 0 1 1 1

4 0 0 1 0 0 3

5 0 0 1 0 1 1

6 0 0 1 1 0 2

7 0 0 1 1 1 1

8 0 1 0 0 0 4

9 0 1 0 0 1 1

10 0 1 0 1 0 2

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Potential Function Method

• Most generic and elegant way to do amortized analysis!
– But, also more abstract than the others…

• State of data structure / system: 𝑆 ∈ 𝒮 (state space)

Potential function 𝚽:𝓢 → ℝ≥𝟎

• Operation 𝒊:
– 𝒕𝒊: actual cost of operation 𝑖

– 𝑺𝒊: state after execution of operation 𝑖 (𝑆0: initial state)

– 𝚽𝒊 ≔ Φ(𝑆𝑖): potential after exec. of operation 𝑖

– 𝒂𝒊: amortized cost of operation 𝑖:

𝒂𝒊 ≔ 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Potential Function Method

Operation 𝒊:

actual cost: 𝑡𝑖 amortized cost: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1

Overall cost:

𝑇 ≔෍

𝑖=1

𝑛

𝑡𝑖 = ෍

𝑖

𝑛

𝑎𝑖 +Φ0 −Φ𝑛

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Binary Counter: Potential Method

• Potential function:
𝚽:𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐨𝐧𝐞𝐬 𝐢𝐧 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐜𝐨𝐮𝐧𝐭𝐞𝐫

• Clearly, Φ0 = 0 and Φ𝑖 ≥ 0 for all 𝑖 ≥ 0

• Actual cost 𝑡𝑖:
 1 flip from 0 to 1

 𝑡𝑖 − 1 flips from 1 to 0

• Potential difference: Φ𝑖 −Φ𝑖−1 = 1 − 𝑡𝑖 − 1 = 2 − 𝑡𝑖

• Amortized cost: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 = 2

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Example 3: Dynamic Array

• How to create an array where the size dynamically adapts to the
number of elements stored?
– e.g., Java “ArrayList” or Python “list”

Implementation:

• Initialize with initial size 𝑁0
• Assumptions: Array can only grow by appending new elements

at the end

• If array is full, the size of the array is increased by a factor 𝛽 > 1

Operations (array of size 𝑵):

• read / write: actual cost 𝑂 1

• append: actual cost is 𝑂(1) if array is not full, otherwise
the append cost is 𝑂 𝛽 ⋅ 𝑁 (new array size)

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Example 3: Dynamic Array

Notation:

• 𝑛: number of elements stored

• 𝑁: current size of array

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡𝑖 = ቊ
1 if 𝑛 < 𝑁

𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

Claim: Amortized append cost is 𝑂 1

Potential function 𝚽?

• should allow to pay expensive append operations by cheap ones

• when array is full, Φ has to be large

• immediately after increasing the size of the array, Φ should be
small again

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Dynamic Array: Potential Function

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡𝑖 = ቊ
1 if 𝑛 < 𝑁

𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Dynamic Array: Amortized Cost

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡𝑖 = ቊ
1 if 𝑛 < 𝑁

𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

