Chapter 4
Amortized Analysis

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Amortization

UNI
f

FREIBURG

* Consider sequence 04, 0, ..., 0, of n operations
(typically performed on some data structure D)

* ;: execution time of operation o;
e T:=1t4+t, + -+ t,: total execution time

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Analysis of Algorithms

UNI
FREIBURG

—

| « Best case

* Worst case caudoun

=

- ——

* Average case Ww?u}j S3wee (zw q@ ‘Mrud

-

e Amortized worst case

What is the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Example 1: Augmented Stack

UNI

FREIBURG

Stack Data Type: Operations

 S.push(x) :inserts x on top of stack " gﬂ
* S.pop() : removes and returns top element g

Complexity of Stack Operations
* In all standard implementations: O(1) \

Additional Operation
* S.multipop(k) : remove and return top k elements
* Complexity: 0 (k) k

 What is the amortized complexity of these operations?

ﬁb’ V““/ L0/ F"‘(“/ ~--) M"‘HQV"T (%1, -. - o W""".‘Flw?(m"’)/ -
\r J
W ops.
P kK R

Algorithm Theory, WS 2016/17 Fabian Kuhn

Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
 Sequence of operationsi =1,2,3,...,n

* Actual cost of op. i: ¢;
* Amortized cost of op. i is a; if for every possible seq. of op.,

n = n
=1 =1

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actual cost t; = 0(1)
« S.multipop(k) : actual cost t; = 0(k)

 Amortized cost of all three operations is constant

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Augmented Stack: Amortized Cost

UNI
FREIBURG

< LcHep

{
ey
T 1

Actual Cost of Augmented Stack Operations

Amortized Cost

« S.push(x), S.pop(): actualcostt; < c

« S.multipop(k) actualcostt; < c-k

pm————

W e@m}tw&

? LY ?us(:o?g. \”l“(f%‘a ¢ 0$“ < Cp
‘\o&«l ¥ elow. o(elkw S Yol ?og/ wM‘.(;o? o <P
Llal cod € 2cp Towl Eops 2 ®

ava. cwl ?0: c@ L 2c¢ aw::d:\l-eoc C-o&) vgaacﬁ ¢ (<8 Q= 2<

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Example 2: Binary Counter

UNI
FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2016/17 Fabian Kuhn

Osee |l _. .. _ (1

1| O°0- - _- 006

Accounting Method

UNI
f

FREIBURG

Observation:
* Eachincrement flips exactlyoneOintoa 1

0010001111 = 0010010000

Idea:
* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x
* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost:%)
* Flip from] to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2016/17 Fabian Kuhn

Accounting Method

Op. | Counter | Cost To Bank | From Bank Net Cost Credit

00000

00001

00010

00011

00100

00101

— 10|~V O

00110

00111

01000

O 00 N oo v | W N -

01001

N R, DN RPIN P WIRLIN R

[HEY
o

01010

?NN—WNN"N’—-—OI

2

2

2

2

2

2

o) 2

R 2

{ O 2
(2

cC + B - 7 A
X2 0 \’CéA

Algorithm Theory, WS 2016/17 Fabian Kuhn

X
\"
Q

UNI
i

FREIBURG

Potential Function Method

UNI

FREIBURG

* Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

» State of data structure / system: S € § (state space)

Potential function ®:8 - R S‘%;‘& slale (Q‘..Pb data sh.)

* Operation i: &, d7(807= O

— t;: actual cost of operation i

— .'S:L state after execution of operation i (Sj: initial state)
— ®; = P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_,4

\ — 3

&=

Algorithm Theory, WS 2016/17 Fabian Kuhn

10

Potential Function Method

FREIBURG

g
Operation i: 24 < 2« Ai’
actual cost: t; amortized cost: a; = t; + &; — D;_4
Overall cost: o
n n (uf) A?)
T = ti=<Zai>+CI>O—CI>n
=1 [
. Sa, = E{‘. +<b“’d>o
ia; = t, ®) + d’.
o 4 'tz - (bn *d)z
445 -0, + ¢
4+ t.,.. — W%, t?u-.
1t - 'b.-.
Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Binary Counter: Potential Method

UNI
f

FREIBURG

Potential function:
&: number of ones in current counter

Clearly, &y = 0and ®; = Oforalli = 0

Actual cost t;:
= 1 flipfromOto1l

T

= t; — 1flipsfrom1toO

ANy

Potential difference: ®; — ®;_;, =1—-(t; — 1) = 2 — t;

R e N ——

Amortized cost: a; = t; + ; —D;_; = 2

Algorithm Theory, WS 2016/17 Fabian Kuhn

12

Example 3: Dynamic Array

UNI
FREIBURG

* How to create an array where the size dynamically adapts to the
number of elements stored?
— e.g., Java “ArrayList” or Python “list”

Implementation: ——

* [Initialize with initial size N, e =

—_—

* Assumptions: Array can only grow by appending new elements
at the end

* |farrayis full, the size of the array is increased by a factor § > 1

K
Operations (array of size N): — ‘
* read / write: actual cost 0((1) | ey -

* append: actual cost is O(1) if array is not full, otherwise
the append cost is O(S - N) (new array size)

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Example 3: Dynamic Array

UNI
f

FREIBURG

Notation:
* n number of elements stored

 N:currentsize of array
=

_ _ | 1 ifn<N
Cost t; ofﬁ‘ append operation: t; = {/3 N if:’lz - N

——

Claim: Amortized append cost is O(1)

Potential function ®?
* should allow to pay expensive append operations by cheap ones
 when array is full, ® has to be large

 immediately after increasing the size of the array, ® should be
small again

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

UNI

Dynamic Array: Potential Function

FREIBURG

1 ifn< N

Cost t; of it" append operation: t; = {,3 N ifn=N

" N
— 1 =
= = ol (0200 e
o ¥ N=N,
cz—l—t—C—_ -7 <4| ¢‘“'y (d)ZEN) “W=0
W —1
(£
c (n -U) L¢(“ V)= —7((5“- N) + (5_‘10
c((sm N) 2 AN
c(p- nz(s
ca(gg\-

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Dynamic Array: Amortized Cost

|
FRE:BURG

UNI

1 ifn< N

Cost t; of it" append operation: t; = {,3 N ifn=N

0 = (pa- 02l 2 0

Q;= -t't + Cbi— dD('/
2
| 4 (5—_(5'_ \}s u<hnN
Q; - . (5
(sm[(;\—((b@*”*(sw)-@(@"“’) -
- Ine
=+ -2 —pv) >
¢! -1 - ——
o

Algorithm Theory, WS 2016/17 Fabian Kuhn

16

