

Chapter 4 Amortized Analysis

Algorithm Theory WS 2016/17

Fabian Kuhn

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

• Best case

Worst case

Average case

running time for a typical input

raudom

Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Example 1: Augmented Stack

Stack Data Type: Operations

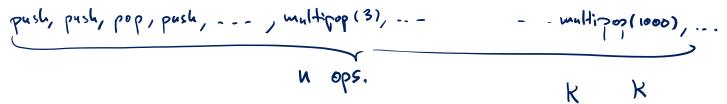
- $S.\operatorname{push}(x)$: inserts x on top of stack
- S.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: O(1)

Additional Operation

- S.multipop(k): remove and return top k elements
- Complexity: O(k)
- What is the amortized complexity of these operations?



Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations i = 1, 2, 3, ..., n
- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of op.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i \quad (+ \subset)$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i = O(1)$
- $S. \operatorname{multipop}(k)$: actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
 - The total number of "popped" elements cannot be more than the total number of "pushed" elements: cost for pop/multipop ≤ cost for push

Augmented Stack: Amortized Cost

Amortized Cost

$$T = \sum_{i}^{\ell} t_{i} \leq \sum_{i} a_{i}$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i \le c$
- S. multipop(k) : actual cost $\widehat{t_i \leq c \cdot k}$

N operations

$$P \le n$$
 push ops. total push cost $\le C \cdot P$
 $total \# elem deleted \le P$ total pop/multipop cost: $\le C \cdot P$
 $total (cost) \le 2 \cdot CP$ total $\# ops \ge P$
 $avg. cost per op \le 2c$ amostred cost of each op i as $a_i := 2c$

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

U							
Operation	Counter Value	Cost					
	00000						
1	00001	1					
2	000 10	2					
3	0001 <mark>1</mark>	1					
4	00 100	3					
5	0010 <mark>1</mark>	1					
6	001 10	2					
7	0011 <mark>1</mark>	1					
8	01000	4					
9	0100 <mark>1</mark>	1					
10	010 10	2					
11	0101 1	1					
12	01 100	3					
13	0110 <mark>1</mark>	1					

Accounting Method

Observation:

Each increment flips exactly one 0 into a 1

 $00100011111 \Rightarrow 0010010000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from <u>0</u> to <u>1</u>: pay 1 to bank account (cost: <u>2</u>)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					0
1	00001	1	l	0	2	1
2	00010	2	I	l	2	l
3	00011	1	I	0	2	2
4	00100	3	l	2	2	l
5	00101	1	l	0	2	2
6	00110	2	(l	2	2
7	00111	1	١	0	2	3
8	01000	4	1	3	2	١
9	01001	1	(O	2	2
10	01010	2	1	(2	2

C + B - F = A $X \ge 0$ $X \le A$

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in \mathcal{S}$ (state space)

Potential function
$$\Phi: \mathcal{S} \to \mathbb{R}_{\geq 0}$$

• Operation *i*:

$$\phi_o := \phi(S_o) = 0$$

- $\underline{t_i}$: actual cost of operation i
- $\underline{S_i}$: state after execution of operation i ($\underline{S_0}$: initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq \underline{t_i} + \underline{\Phi_i} - \underline{\Phi_{i-1}}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

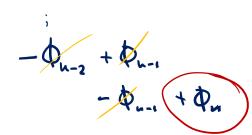
Overall cost:

$$\sum_{i=1}^{n} a_i = t_1 + \phi_0 + \phi_1$$

$$+ t_2 - \phi_1 + \phi_2$$

$$- \phi_2 + \phi_3$$

$$\vdots$$



Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

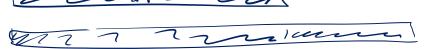
- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i :
 - 1 flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = \underbrace{1 (t_i 1)}_{i=1} = \underbrace{2 t_i}_{i=1}$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Example 3: Dynamic Array

- How to create an array where the size dynamically adapts to the number of elements stored?
 - e.g., Java "ArrayList" or Python "list"

Implementation:

• Initialize with initial size N_0



- Assumptions: Array can only grow by appending new elements at the end
- If array is full, the size of the array is increased by a factor eta>1

Operations (array of size N):

- read / write: actual cost O(1)
- append: actual cost is O(1) if array is not full, otherwise the append cost is $O(\beta \cdot N)$ (new array size)

Example 3: Dynamic Array

Notation:

- n: number of elements stored
- *N*: current size of array

Cost
$$t_i$$
 of $\underline{i^{th}}$ append operation: $t_i = \begin{cases} \underline{1} & \text{if } n < N \\ \underline{\beta \cdot N} & \text{if } n = N \end{cases}$

Claim: Amortized append cost is O(1)

Potential function Φ ?

- should allow to pay expensive append operations by cheap ones
- when array is full, Φ has to be large
- immediately after increasing the size of the array, Φ should be small again

Dynamic Array: Potential Function

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

$$\phi$$
 small $(\phi = 0)$

$$(\phi = 0)$$

$$N = N_o$$

$$C(\beta N - N) \ge \beta N$$

$$\phi(n,N) = \frac{\beta}{\beta-1} (\beta n - N) + \frac{\beta}{\beta-1} N_0$$

Dynamic Array: Amortized Cost

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

$$\phi(u,N) = \frac{\beta}{\beta-1} \left(\beta u - N + N_0\right) \geq 0$$

$$\alpha_i = t_i + \phi_i - \phi_{i-1}$$

$$Q_{i} = \frac{1 + \frac{\beta^{2}}{\beta - 1}}{\beta N + \left(\frac{\beta}{\beta - 1} \left(\beta \left(N + 1\right) - \beta N\right) - \frac{\beta}{\beta - 1} \left(\beta N - N\right)\right)} \qquad n = N$$

$$\frac{\beta^{2}}{\beta - 1} + \frac{\beta}{\beta - 1} \left(N - \beta N\right) = \frac{\beta^{2}}{\beta - 1}$$
Algorithm Theory, WS 2016/17
$$= \frac{\beta^{2}}{\beta - 1}$$
Fabian Kuhn