

Chapter 5 Data Structures

Algorithm Theory WS 2016/17

Dictionary:

- Operations: insert(*key*,*value*), delete(*key*), find(*key*)
- Implementations:
 - Linked list: all operations take O(n) time (n: size of data structure)
 - Balanced binary tree: all operations take $O(\log n)$ time
 - Hash table: all operations take O(1) times (with some assumptions)

Stack (LIFO Queue):

- Operations: push, pull
- Linked list: O(1) for both operations

(FIFO) Queue:

- Operations: enqueue, dequeue
- Linked list: O(1) time for both operations

Here: Priority Queues (heaps), Union-Find data structure

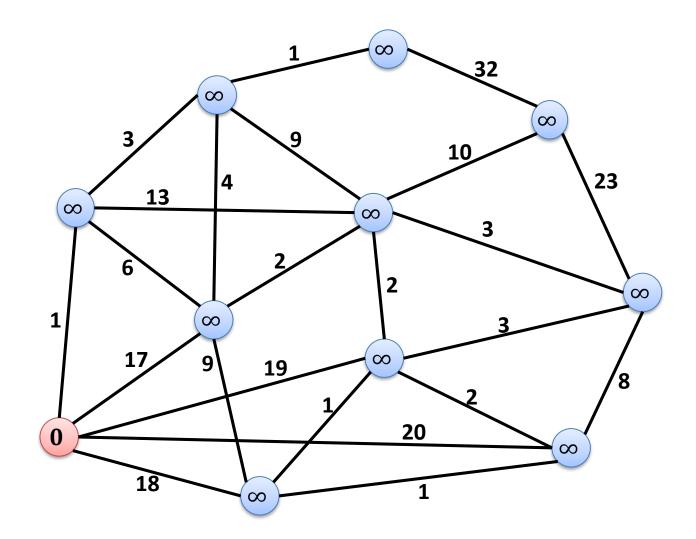
Algorithm Theory, WS 2016/17

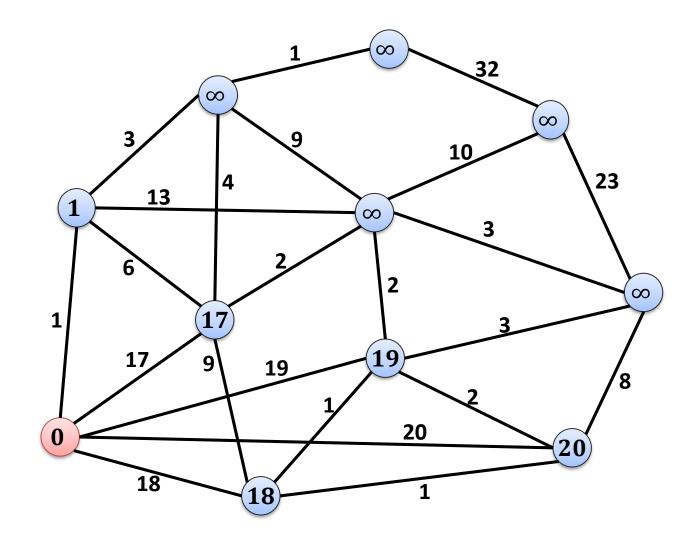
Single-Source Shortest Path Problem:

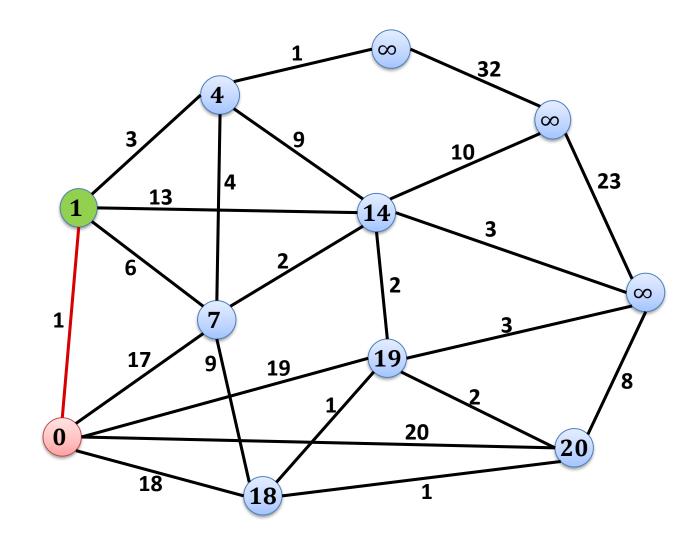
- Given: graph G = (V, E) with edge weights w(e) ≥ 0 for e ∈ E source node s ∈ V
- **Goal:** compute shortest paths from s to all $v \in V$

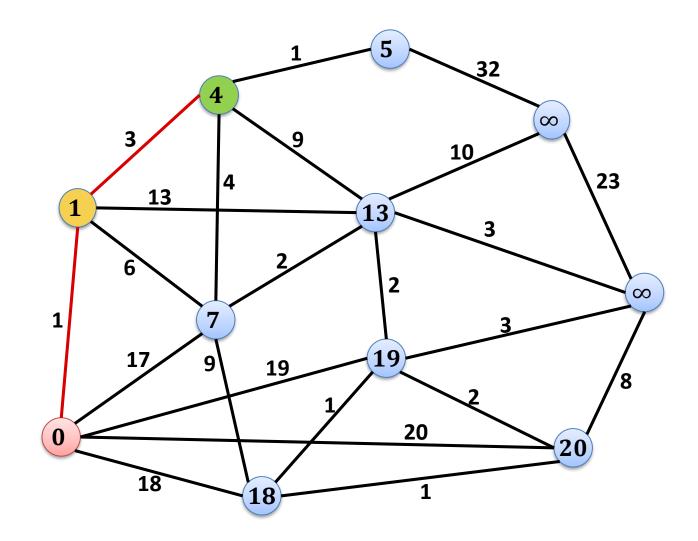
Dijkstra's Algorithm:

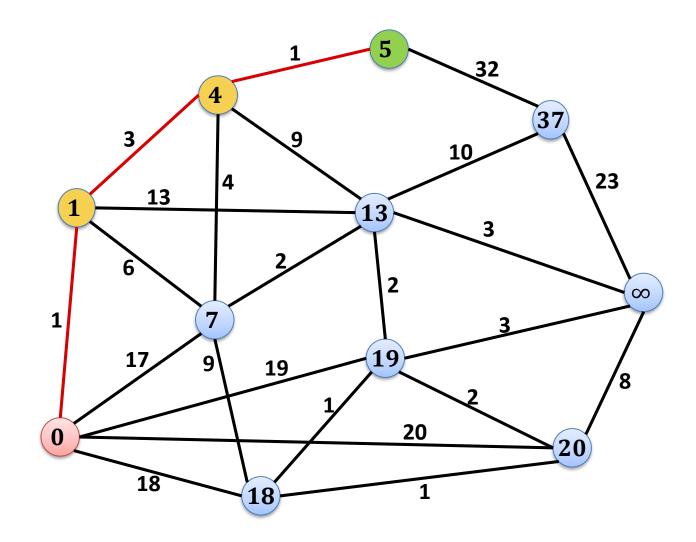
- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes are unmarked
- 3. Get unmarked node u which minimizes d(s, u):
- 4. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$
- 5. mark node u
- 6. Until all nodes are marked

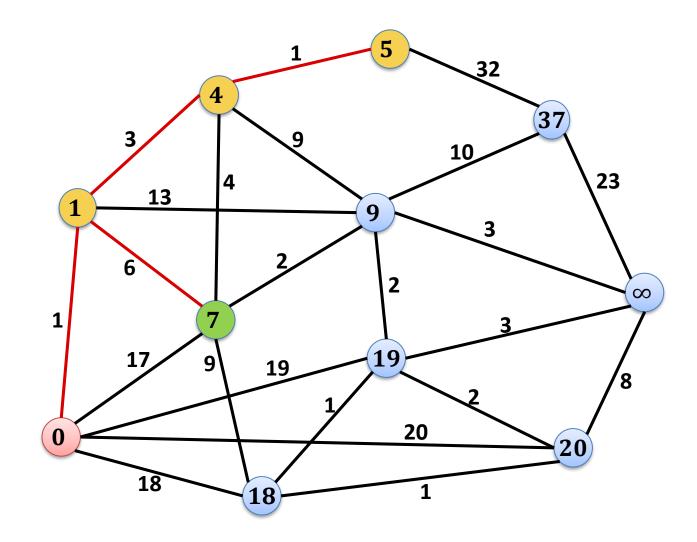


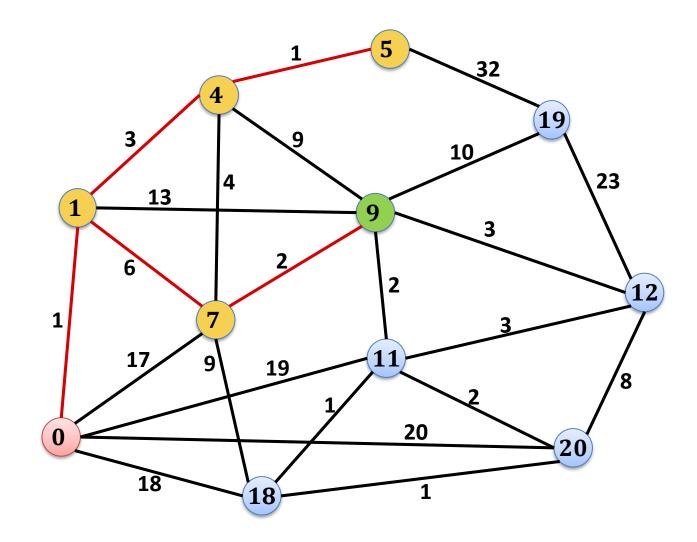


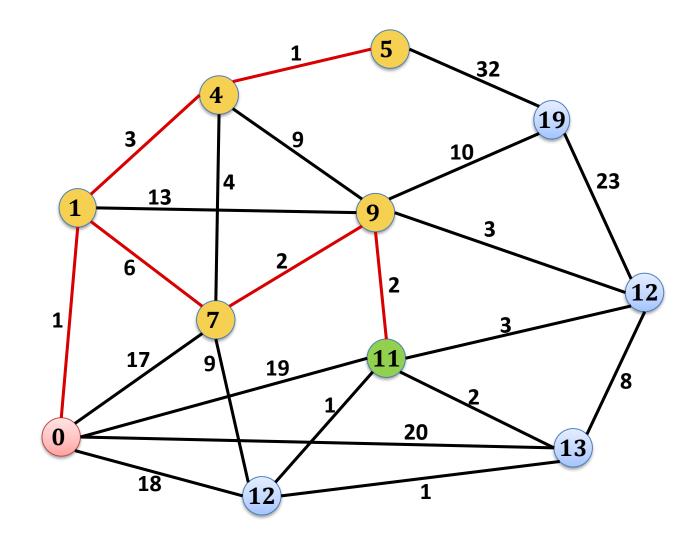












Dijkstra's Algorithm:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked
- 3. Get unmarked node u which minimizes d(s, u):

4. For all
$$e = \{u, v\} \in E$$
, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2016/17

Priority Queue / Heap

FREBURG

- Stores (*key,data*) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- **Insert**(*key,data*): inserts (*key,data*)-pair, returns pointer to entry
- **Get-Min**: returns (*key,data*)-pair with minimum *key*
- **Delete-Min**: deletes minimum (*key,data*)-pair
- **Decrease-Key**(*entry,newkey*): decreases *key* of *entry* to *newkey*
- Merge: merges two heaps into one

Implementation of Dijkstra's Algorithm

Store nodes in a priority queue, use d(s, v) as keys:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked
- 3. Get unmarked node u which minimizes d(s, u):

4. mark node *u*

5. For all
$$e = \{u, v\} \in E$$
, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$

6. Until all nodes are marked

Algorithm Theory, WS 2016/17

Analysis

Number of priority queue operations for Dijkstra:

- Initialize-Heap: 1
- Is-Empty: |V|
- Insert: |V|
- Get-Min: **V**
- Delete-Min: **V**
- Merge: 0

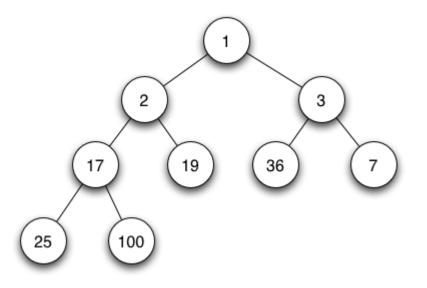
Algorithm Theory, WS 2016/17

HREBURG

Priority Queue Implementation

Implementation as min-heap:

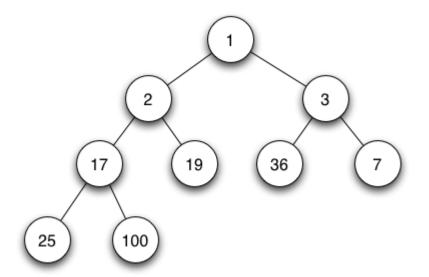
→ complete binary tree, e.g., stored in an array



Priority Queue Implementation

Implementation as min-heap:

- → complete binary tree, e.g., stored in an array
- Initialize-Heap: **0**(1)
- Is-Empty: **0**(1)
- Insert: **0**(log **n**)
- Get-Min: **0**(1)
- Delete-Min: O(log n)
- Decrease-Key: **O**(log **n**)
- Merge (heaps of size m and $n, m \le n$): $O(m \log n)$



Can We Do Better?

• Cost of **Dijkstra** with **complete binary min-heap** implementation:

$O(|E|\log|V|)$

• Binary heap:

insert, delete-min, and decrease-key cost $O(\log n)$ merging two heaps is expensive

- One of the operations insert or delete-min must cost $\Omega(\log n)$:
 - Heap-Sort:

Insert n elements into heap, then take out the minimum n times

- (Comparison-based) sorting costs at least $\Omega(n \log n)$.
- But maybe we can improve merge, decrease-key, and one of the other two operations?

Structure:

A Fibonacci heap *H* consists of a collection of trees satisfying the **min-heap** property.

Min-Heap Property:

Key of a node $v \leq$ keys of all nodes in any sub-tree of v

Structure:

A Fibonacci heap *H* consists of a collection of trees satisfying the min-heap property.

Variables:

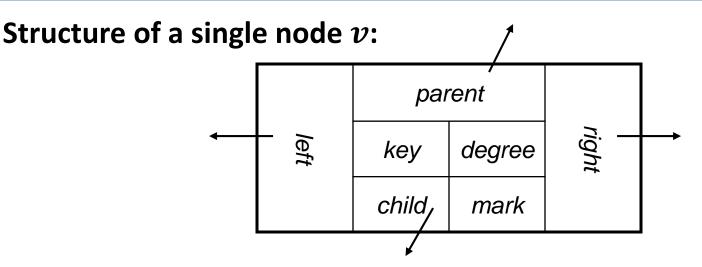
- *H.min*: root of the tree containing the (a) minimum key
- *H.rootlist*: circular, doubly linked, unordered list containing the roots of all trees
- *H.size*: number of nodes currently in *H*

Lazy Merging:

- To reduce the number of trees, sometimes, trees need to be merged
- Lazy merging: Do not merge as long as possible...

Algorithm Theory, WS 2016/17

Trees in Fibonacci Heaps



- *v*. *child*: points to circular, doubly linked and unordered list of the children of *v*
- *v*.*left*, *v*.*right*: pointers to siblings (in doubly linked list)
- *v.mark*: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

Algorithm Theory, WS 2016/17

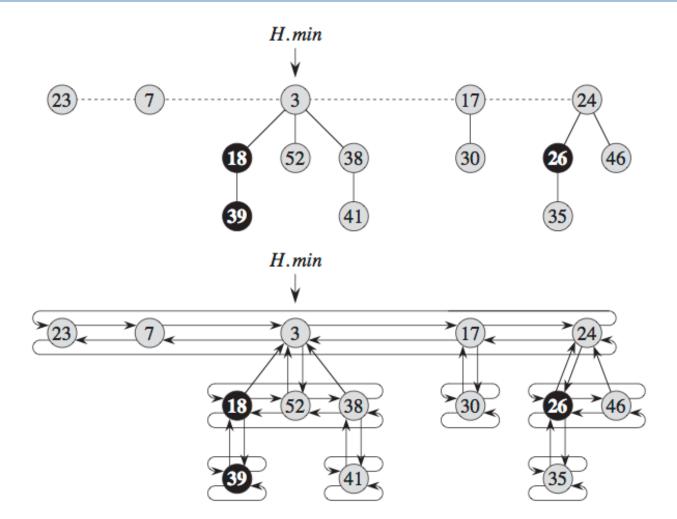


Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• $H.rootlist \coloneqq H.min \coloneqq null$

Merge heaps H and H':

- concatenate root lists
- update *H*.*min*

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
 - mark of root node is set to false
- merge heaps H and H'

Get minimum element of *H*:

• return *H*. min

Operation Delete-Min

Delete the node with minimum key from H and return its element:

- 1. $m \coloneqq H.min$;
- 2. **if** H. size > 0 **then**
- 3. remove *H*.*min* from *H*.*rootlist*;
- 4. add *H. min. child* (list) to *H. rootlist*
- 5. H.Consolidate();

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. **return** *m*

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:

• rank(v): degree of v (number of children of v)

Tree T:

• rank(T): rank (degree) of root node of T

Heap *H*:

• rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):

 $rank(H) \leq D(n)$

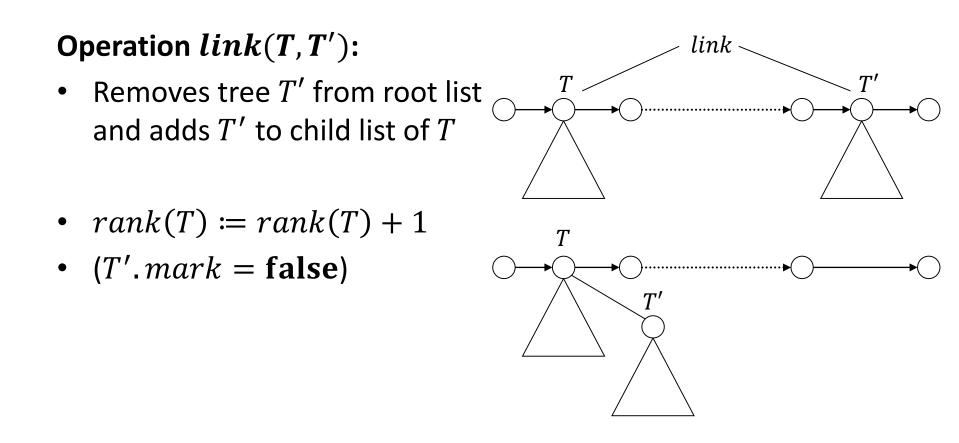
- for a known function D(n)

Algorithm Theory, WS 2016/17

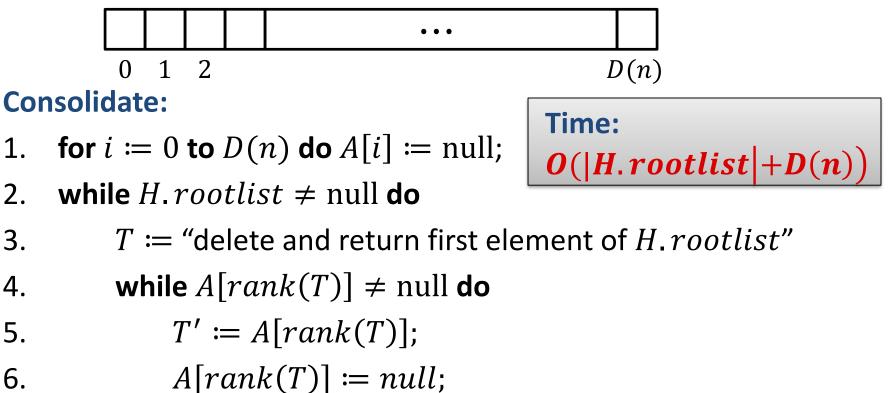
Merging Two Trees

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

• Assume: min-key of $T < \min$ -key of T'



Consolidation of Root List

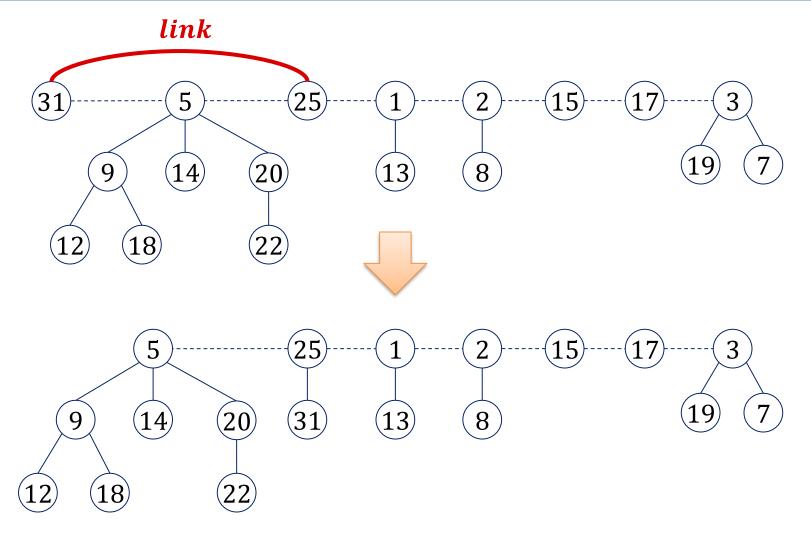


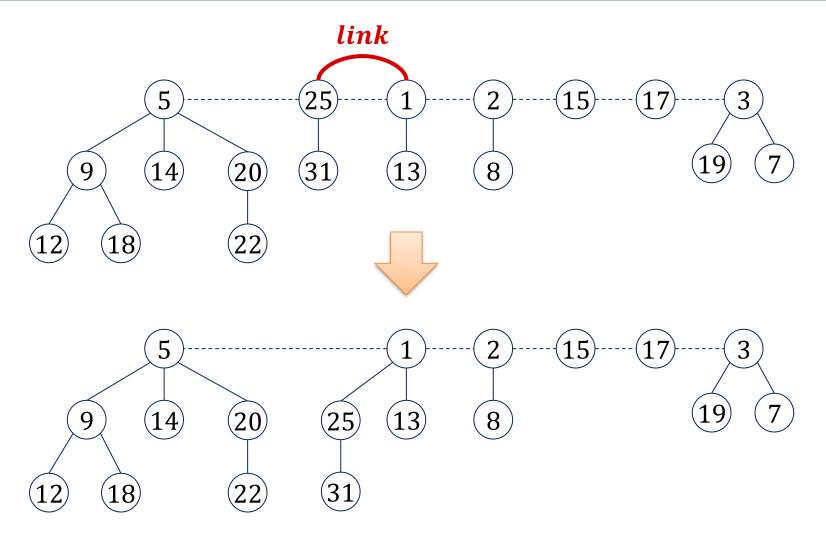
7.
$$T \coloneqq link(T,T')$$

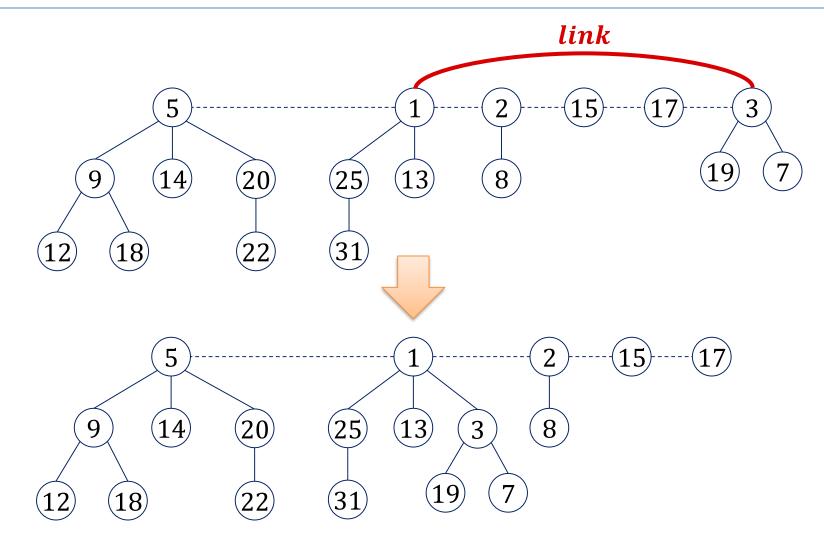
8. $A[rank(T)] \coloneqq T$

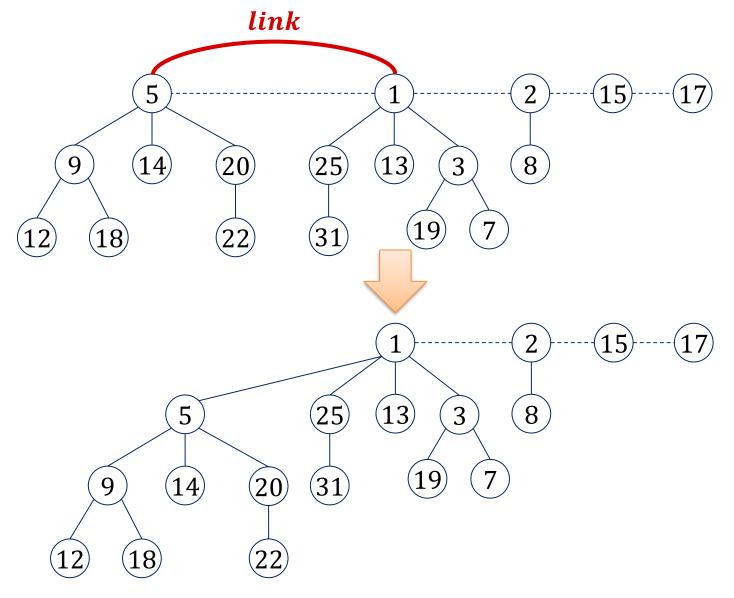
9. Create new *H*.*rootlist* and *H*.*min*

Algorithm Theory, WS 2016/17

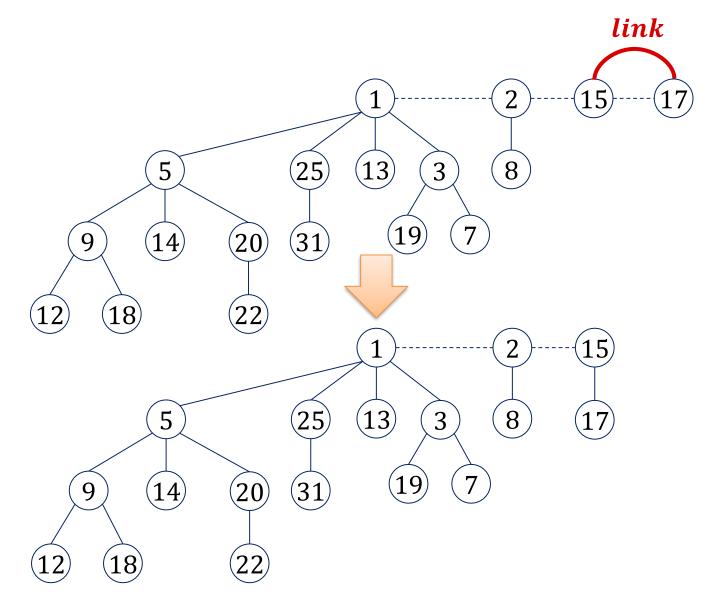




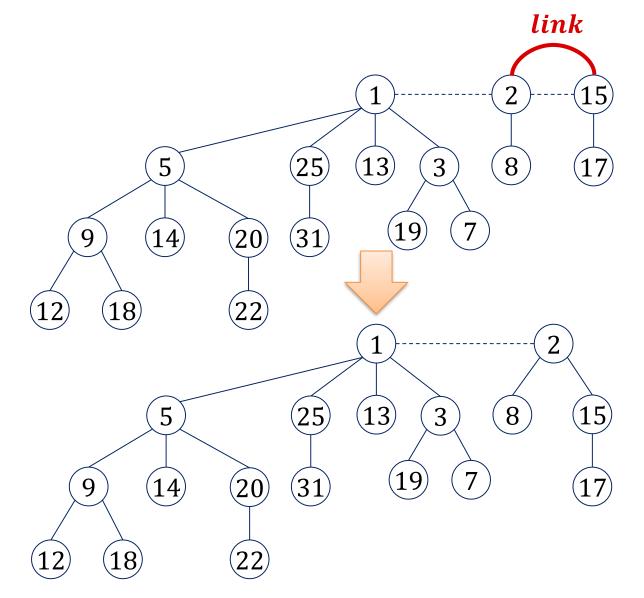




Algorithm Theory, WS 2016/17



Algorithm Theory, WS 2016/17



Algorithm Theory, WS 2016/17

Operation Decrease-Key

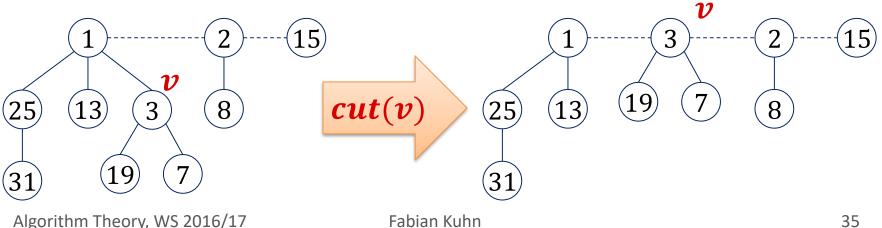
Decrease-Key(v, x): (decrease key of node v to new value x)

- 1. if $x \ge v$. key then return;
- 2. $v.key \coloneqq x$; update H.min;
- 3. if $v \in H.rootlist \lor x \ge v.parent.key$ then return
- 4. repeat
- 5. $parent \coloneqq v. parent;$
- 6. *H.cut*(*v*);
- 7. $v \coloneqq parent;$
- 8. until $\neg(v.mark) \lor v \in H.rootlist;$
- 9. if $v \notin H$.rootlist then v.mark := true;

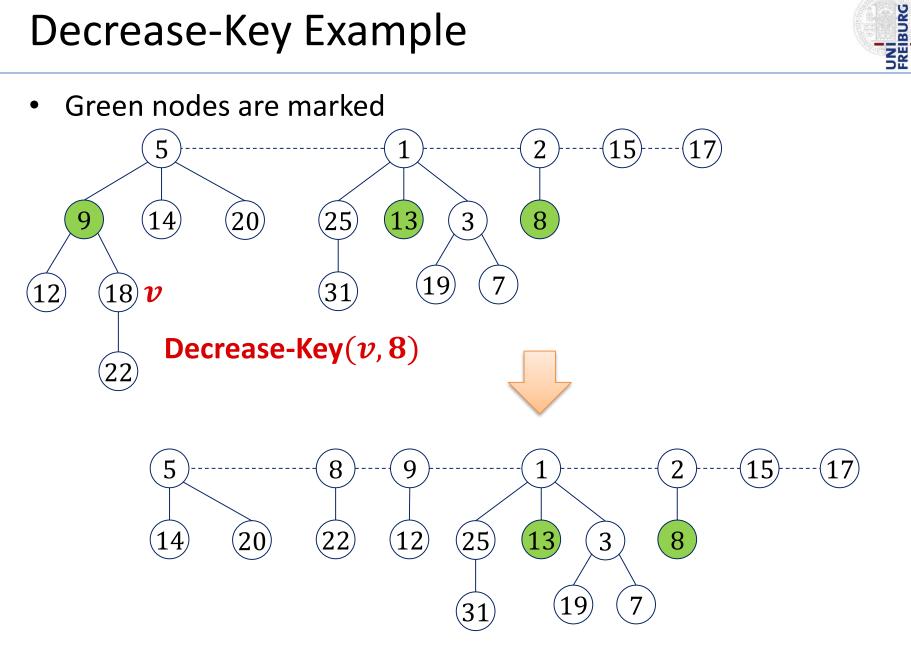
Operation Cut(v)

Operation H.cut(v):

- Cuts v's sub-tree from its parent and adds v to rootlist
- if $v \notin H$.rootlist then 1.
- // cut the link between v and its parent 2.
- $rank(v.parent) \coloneqq rank(v.parent) 1;$ 3.
- remove v from v. parent. child (list) 4.
- 5. $v.parent \coloneqq \text{null};$
- add v to H.rootlist; v.mark := false; 6.



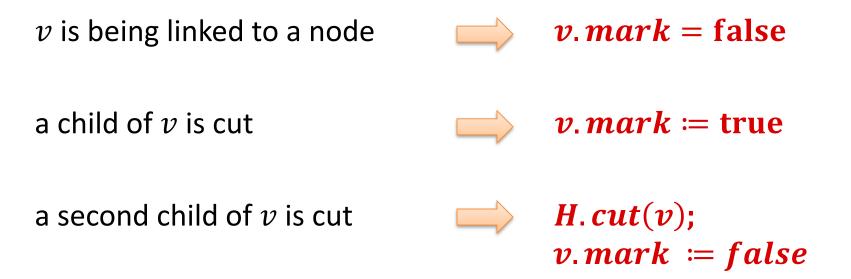
Decrease-Key Example



Fibonacci Heaps Marks

- Nodes in the root list (the tree roots) are always unmarked
 → If a node is added to the root list (insert, decrease-key), the mark of the node is set to false.
- Nodes not in the root list can only get marked when a subtree is cut in a decrease-key operation
- A node v is marked if and only if v is not in the root list and v has lost a child since v was attached to its current parent
 - a node can only change its parent by being moved to the root list

History of a node v:



- Hence, the boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.
- Nodes v in the root list always have v.mark = false

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1)
- 2. Consolidate *H*.*rootlist*

time: O(length of H.rootlist + D(n))

• Step 2 can potentially be linear in *n* (size of *H*)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node vtime: O(1)
- Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in *n*

Exercises: Both operations can take $\Theta(n)$ time in the worst case!

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
 - Seems a large price to pay to get insert and merge in O(1) time
- Maybe, the operations are efficient most of the time?
 - It seems to require a lot of operations to get a long rootlist and thus, an expensive consolidate operation
 - In each decrease-key operation, at most one node gets marked:
 We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?
- We can → requires **amortized analysis**