

Chapter 5 Data Structures

Algorithm Theory WS 2016/17

Fabian Kuhn

Priority Queue / Heap

FREBURG

- Stores (*key,data*) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- **Insert**(*key,data*): inserts (*key,data*)-pair, returns pointer to entry
- **Get-Min**: returns (*key,data*)-pair with minimum *key*
- **Delete-Min**: deletes minimum (*key,data*)-pair
- **Decrease-Key**(*entry,newkey*): decreases *key* of *entry* to *newkey*
- Merge: merges two heaps into one

Fibonacci Heap

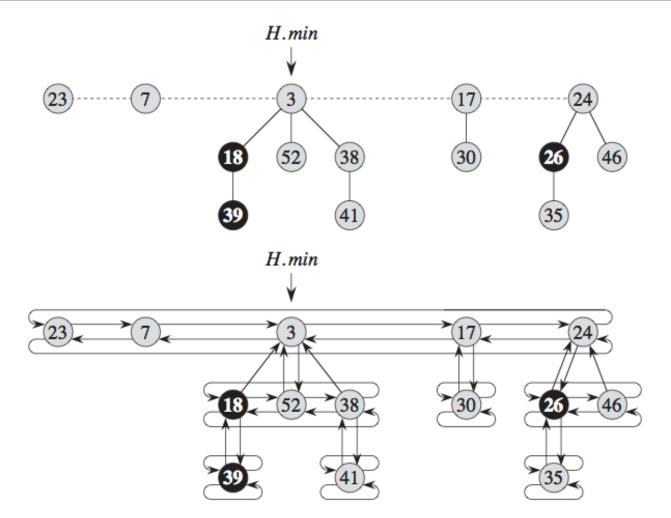


Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• $H.rootlist \coloneqq H.min \coloneqq null$

Merge heaps H and H':

- concatenate root lists
- update *H*.*min*

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
 - mark of root node is set to false
- merge heaps H and H'

Get minimum element of *H*:

• return *H*. min

Operation Delete-Min

Delete the node with minimum key from H and return its element:

- 1. $m \coloneqq H.min$;
- 2. **if** H. size > 0 **then**
- 3. remove *H*.*min* from *H*.*rootlist*;
- 4. add *H. min. child* (list) to *H. rootlist*
- 5. H.Consolidate();

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. **return** *m*

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:

• rank(v): degree of v (number of children of v)

Tree T:

• rank(T): rank (degree) of root node of T

Heap *H*:

• rank(H): maximum degree (#children) of any node in H

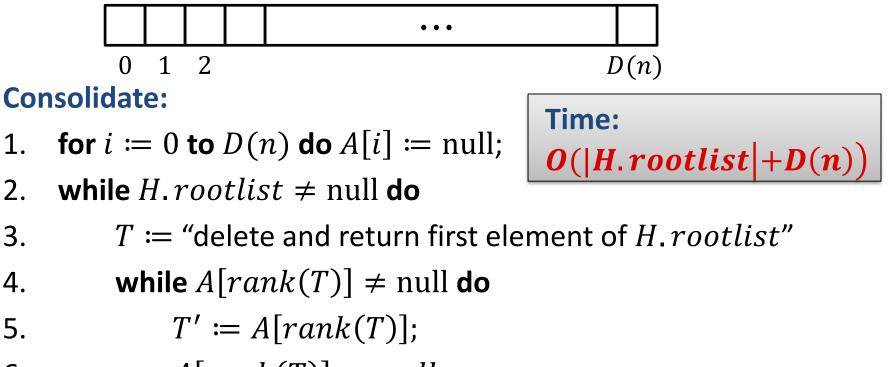
Assumption (n: number of nodes in H):

 $rank(H) \leq D(n)$

- for a known function D(n)

Algorithm Theory, WS 2016/17

Consolidation of Root List



6.
$$A[rank(T)] \coloneqq null;$$

7.
$$T \coloneqq link(T,T')$$

8. $A[rank(T)] \coloneqq T$

9. Create new *H*.*rootlist* and *H*.*min*

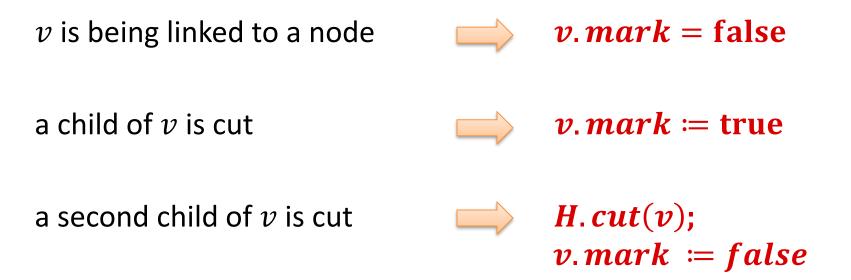
Algorithm Theory, WS 2016/17

Operation Decrease-Key

Decrease-Key(v, x): (decrease key of node v to new value x)

- 1. if $x \ge v$. key then return;
- 2. $v.key \coloneqq x$; update H.min;
- 3. if $v \in H.rootlist \lor x \ge v.parent.key$ then return
- 4. repeat
- 5. $parent \coloneqq v. parent;$
- 6. *H.cut*(*v*);
- 7. $v \coloneqq parent;$
- 8. until $\neg(v.mark) \lor v \in H.rootlist;$
- 9. if $v \notin H$.rootlist then v.mark := true;

History of a node v:



- Hence, the boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.
- Nodes v in the root list always have v.mark = false

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1)
- 2. Consolidate *H*.*rootlist*

time: O(length of H.rootlist + D(n))

• Step 2 can potentially be linear in *n* (size of *H*)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node vtime: O(1)
- Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in *n*

Exercises: Both operations can take $\Theta(n)$ time in the worst case!

Fibonacci Heaps Complexity

- Worst-case cost of a single delete-min or decrease-key operation is $\Omega(n)$
- Can we prove a small worst-case amortized cost for delete-min and decrease-key operations?

Recall:

- Data structure that allows operations O_1, \dots, O_k
- We say that operation O_p has amortized cost a_p if for every execution the total time is

$$T \le \sum_{p=1}^{\kappa} n_p \cdot a_p \,,$$

where n_p is the number of operations of type O_p

Algorithm Theory, WS 2016/17

Fabian Kuhn

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost **0**(1)
- Starting with an empty heap, any sequence of n operations with at most n_d delete-min operations has total cost (time)

 $T = O(n + n_d \log n).$

- We will now need the marks...
- Cost for Dijkstra: $O(|E| + |V| \log |V|)$

Cycle of a node:

- Node v is removed from root list and linked to a node
 v.mark = false
- 2. Child node *u* of *v* is cut and added to root list

 $v.mark \coloneqq true$

3. Second child of v is cut

node v is cut as well and moved to root list $v.mark \coloneqq false$

The boolean value v.mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function

System state characterized by two parameters:

- **R**: number of trees (length of *H*. *rootlist*)
- M: number of marked nodes (not in the root list)

Potential function:

 $\Phi \coloneqq R + 2M$

Example: 5 18 9 2 1525 (13)20 12 3 8 14 7 19 31

• $R = 7, M = 2 \rightarrow \Phi = 11$

Actual Time of Operations

- Operations: *initialize-heap, is-empty, insert, get-min, merge* actual time: 0(1)
 - Normalize unit time such that

 $t_{init}, t_{is-empty}, t_{insert}, t_{get-min}, t_{merge} \leq 1$

- Operation *delete-min*:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

 $t_{del-min} \leq D(n) + \text{ length of } H.rootlist$

- Operation **descrease-key**:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

$t_{decr-key} \leq$ length of path to next unmarked ancestor

Amortized Times

Assume operation *i* is of type:

• initialize-heap:

- actual time: $t_i \leq 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

• is-empty, get-min:

- actual time: $t_i \leq 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$
- merge:
 - Actual time: $t_i \leq 1$
 - combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
 - amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

Amortized Time of Insert

Assume that operation *i* is an *insert* operation:

- Actual time: $t_i \leq 1$
- Potential function:
 - M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
 - *R* grows by 1 (one element is added to the root list)

 $\begin{aligned} M_i &= M_{i-1}, & R_i &= R_{i-1} + 1 \\ \Phi_i &= \Phi_{i-1} + 1 \end{aligned}$

• Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq 2$$

Amortized Time of Delete-Min

Assume that operation *i* is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H.rootlist|$

Potential function $\Phi = R + 2M$:

- R: changes from |H.rootlist| to at most D(n)
- *M*: (# of marked nodes)
 - Number of marks does not change

$$\begin{split} M_i &= M_{i-1}, \quad R_i \leq R_{i-1} + D(n) + 1 - |H.rootlist| \\ \Phi_i &\leq \Phi_{i-1} + D(n) + 1 - |H.rootlist| \end{split}$$

Amortized Time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq 2D(n) + 1$$

Amortized Time of Decrease-Key

Assume that operation i is a *decrease-key* operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \ldots, u_k are moved to root list
 - u_1, \dots, u_k are marked and moved to root list, v. mark is set to true

Amortized Time of Decrease-Key

Assume that operation *i* is a *decrease-key* operation at node *u*:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u₁, ..., u_k are moved to root list
 u₁, ..., u_k are marked and moved to root list, v. mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k + 1$, M grows by 1 and is decreased by $\geq k$

 $\begin{array}{ll} R_i \leq R_{i-1} + k + 1, & M_i \leq M_{i-1} + 1 - k \\ \Phi_i \leq \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k \end{array}$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le k + 1 + 3 - k = 4$$

Complexities Fibonacci Heap

- Initialize-Heap: **0(1)**
- Is-Empty: **0**(1)
- Insert: **0**(1)
- Get-Min: **0**(1)
- Delete-Min: $O(D(n)) \iff$ amortized
- Decrease-Key: 0(1)
- Merge (heaps of size m and $n, m \le n$): O(1)
- How large can D(n) get?

Lemma:

Consider a node v of rank k and let u_1, \ldots, u_k be the children of v in the order in which they were linked to v. Then,

 $rank(u_i) \geq i-2.$

Proof:

Fibonacci Numbers:

 $F_0 = 0$, $F_1 = 1$, $\forall k \ge 2: F_k = F_{k-1} + F_{k-2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Proof:

• S_k : minimum size of the sub-tree of a node of rank k

Size of Trees

$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

• Claim about Fibonacci numbers:

$$\forall k \ge 0 \colon F_{k+2} = 1 + \sum_{i=0}^{\kappa} F_i$$

1_

Size of Trees

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^k F_i$$

• Claim of lemma: $S_k \ge F_{k+2}$

Size of Trees

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

 $D(n) = O(\log n)$.

Proof:

• The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Summary: Binomial and Fibonacci Heaps

	Binary Heap	Fibonacci Heap
initialize	0 (1)	0 (1)
insert	$O(\log n)$	0 (1)
get-min	0 (1)	0 (1)
delete-min	$O(\log n)$	O (log n) *
decrease-key	$O(\log n)$	0 (1) *
merge	$O(m \cdot \log n)$	0 (1)
is-empty	0 (1)	0 (1)

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step:

Grow the current component by adding the minimum weight edge *e* connecting the current component with any other node

Kruskal Algorithm:

- 1. Start with an empty edge set
- In each step:
 Add minimum weight edge *e* such that *e* does not close a cycle

Implementation of Prim Algorithm

Start at node *s*, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $s \ge v$ are unmarked
- 3. Get unmarked node u which minimizes d(u):

4. For all
$$e = \{u, v\} \in E$$
, $d(v) = \min\{d(v), w(e)\}$

5. mark node *u*

6. Until all nodes are marked

Algorithm Theory, WS 2016/17

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

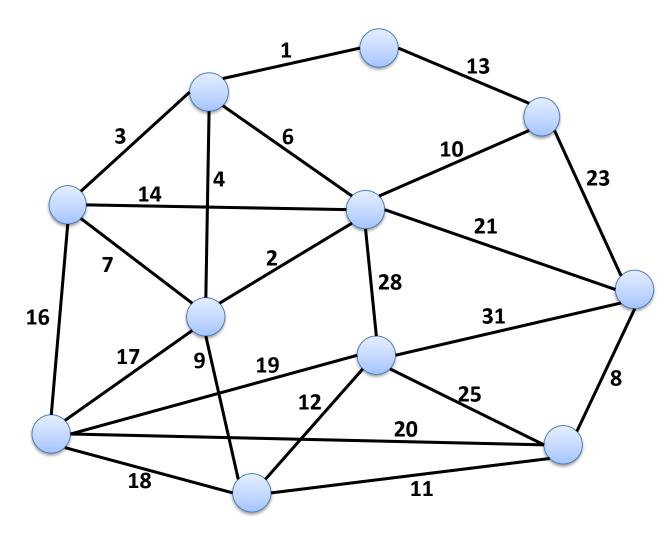
• Analysis identical to the analysis of Dijkstra's algorithm:

O(n) insert and delete-min operations

O(m) decrease-key operations

• Running time: $O(m + n \log n)$

Kruskal Algorithm



1. Start with an empty edge set

2. In each step: Add minimum weight edge *e* such that *e* does *not* close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge *e*:

if *e* does not close a cycle then

add *e* to the current solution

Union-Find Data Structure

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements

• set of disjoint sets

Operations:

- make_set(x): create a new set that only contains element x
- **find**(*x*): return the set containing *x*
- **union**(*x*, *y*): merge the two sets containing *x* and *y*

Implementation of Kruskal Algorithm

- Initialization:
 For each node v: make_set(v)
- Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$: if find(u) \neq find(v) then

add e to the current solution

union(u, v)