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Minimum Spanning Trees
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Prim Algorithm:

Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle
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Union-Find Data Structure
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Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
* set of disjoint sets

Operations:

 make_set(x): create a new set that only contains element x

* find(x): return the set containing x

* union(x,y): merge the two sets containing x and y
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Implementation of Kruskal Algorithm
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1. [Initialization:
For each node v: make_set(v)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreachedge e = {u, v}:
if find(u) # find(v) then
add e to the current solution

union(u, v)
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Managing Connected Components
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* Union-find data structure can be used more generally to manage
the connected components of a graph

... if edges are added incrementally

* make_set(v) for every node v
* find(v) returns component containing v

* union(u, v) merges the components of u and v
(when an edge is added between the components)

* (Can also be used to manage biconnected components
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Basic Implementation Properties
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Representation of sets:

* Every set S of the partition is identified with a representative,
by one of its members x € §

Operations:
* make_set(x): x is the representative of the new set {x}

* find(x): return representative of set S, containing x

* union(x,y): unites the sets S, and §,, containing x and y and
returns the new representative of 5, U §,,
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Observations
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Throughout the discussion of union-find:

* n:total number of make_set operations
 m: total number of operations (make_set, find, and union)

Clearly:
°* mz=2n

* There are at most n — 1 union operations

Remark:

 We assume that the n make_set operations are the first n
operations

— Does not really matter...
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Linked List Implementation

Each set is implemented as a linked list:

* representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

v | | |
—1>5—12—8 —43— 1

x

| |
—> 9 — 15— 7
4

P

* sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9
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Linked List Implementation
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make_set(x):
 (Create list with one element:

time: 0(1) —> X
4
find(x):
e Return first list element: 'hl | |
time: 0(1)

——>y—>a—>x—>b
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Linked List Implementation
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union(x, y):
* Append list of y to list of x:

I | | | § j |

T a— b — x — C U——>d—>e—>y
4 U 0\

v I | | | ‘ ‘

> >b—>x—>c—>d—>e—>y

iy

Time: O(length of list of y)
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Cost of Union (Linked List Implementation) _
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Total cost for n — 1 union operations can be ©(n?):

* make_set(x;), make_set(x,), ..., make_set(x,,),
union(x,_q, x,,), union(x,,_,, X,_1), ..., union(xy, x,)
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Weighted-Union Heuristic

* In a bad execution, average cost per union can be 0(n)

* Problem: The longer list is always appended to the shorter one

Idea:
* In each union operation, append shorter list to longer one!

Syl})

Cost for union of sets S, and S,: O(min{|S,|,

Theorem: The overall cost of m operations of which at most n are
make_set operations is O(m + nlogn).
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Weighted-Union Heuristic
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Theorem: The overall cost of m operations of which at mostn
are make_set operations is O(m + nlogn).

Proof:
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Disjoint-Set Forests
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* Represent each set by a tree

* Representative of a set is the root of the tree
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Disjoint-Set Forests

make_set(x): create new one-node tree @

o

find(x): follow parent point to root 0 )
(parent pointer to itself)

union(x, y): attach tree of x to tree of y

Tof vy
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Bad Sequence
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Bad sequence leads to tree(s) of depth O(n)

* make_set(x;), make_set(x,), ..., make_set(x,,),
union(x, x5), union(xy, x3), ..., union(xy, x,,)
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Union-By-Size Heuristic

Union of sets $; and §5:

* Root of trees representing S; and S,: y and 1y

* W.l.o.g., assume that |S;| = |S,]|

* RootofS; US,: 1 (1, is attached to r; as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case
cost of a find-operation is O(logn)

Proof:

Similar Strategy: union-by-rank
* rank: essentially the depth of a tree
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Union-Find Algorithms
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Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

* make_set: worst-case cost O(1)

e find : worst-case cost 0(1)

* union :amortized worst-case cost O(logn)

Disjoint-Set Forest with Union-By-Size Heuristic:
* make_set: worst-case cost 0(1)

e find : worst-case cost O(logn)

 union :worst-case cost O(logn)

Can we make this faster?
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Path Compression During Find Operation _
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1. ifa # a.parent then

2. a.parent := find(a.parent)
3. returna.parent
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Complexity With Path Compression
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When using only path compression (without union-by-rank):
m.: total number of operations

* f of which are find-operations

* n of which are make_set-operations
- at most n — 1 are union-operations

Total cost: O (m +f- [log2+f/n nD = O(m +f- log2+m/nn)
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Union-By-Size and Path Compression
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Theorem:

Using the combined union-by-rank and path compression
heuristic, the running time of m disjoint-set (union-find)
operations on n elements (at most n make_set-operations) is

@(m - a(m, n)),

Where a(m, n) is the inverse of the Ackermann function.
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Ackermann Function and its Inverse
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Ackermann Function:

Fork,f > 1,

(2¢ ifk=1¢>1
A(k,?) ={ Ak —1,2), ifk>1¢=1
A(k—1,Ak,¢-1)), ifk>1¢>1

Inverse of Ackermann Function:

a(m,n) := min{k > 1| A(k,|™/5]) > log, n}
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Inverse of Ackermann Function
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 a(m,n) :=min{k > 1| Ak, |™/nl) > log, n}
m=n= Ak, |™/n]) = A(k,1) = a(m,n) < min{k = 1|A(k,1) > logn}

e A(1,0) =2t A(k,1) = Ak —1,2),
A(k,£) = A(k — 1,A(k, ¢ — 1))
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