

Chapter 6 Graph Algorithms

Algorithm Theory WS 2016/17

Graphs

multi-sreph

Sel L-loop

Extremely important concept in computer science

Graph $G = (\underline{V}, \underline{E})$

- V: node (or vertex) set
- $E \subseteq V^2$: edge set edge (4, v)
 - Simple graph: no self-loops, no multiple edges
 - Undirected graph: we often think of edges as sets of size 2 (e.g., $\{u, v\}$)
 - Directed graph: edges are sometimes also called arcs
 - Weighted graph: (positive) weight on edges (or nodes)
- (simple) path: sequence v_0, \dots, v_k of nodes such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, \dots, k-1\}$

Many real-world problems can be formulated as optimization problems on graphs

Algorithm Theory, WS 2016/17

Graph Optimization: Examples

UNI

Minimum spanning tree (MST):

• Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:

• Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):

• Compute shortest TSP path/tour in weighted graph

Vertex coloring:

- Color the nodes such that neighbors get different colors
- Goal: minimize the number of colors

Maximum matching:

- Matching: set of pair-wise non-adjacent edges
- Goal: maximize the size of the matching

Algorithm Theory, WS 2016/17

Network Flow

Flow Network:

- Directed graph $G = (V, E), E \subseteq V^2$
- Each (directed) edge e has a capacity $c_e \ge 0$
 - Amount of flow (traffic) that the edge can carry
- A single source node $s \in V$ and a single sink node $t \in V$

Flow: (informally)

• Traffic from s to t such that each edge carries at most its capacity

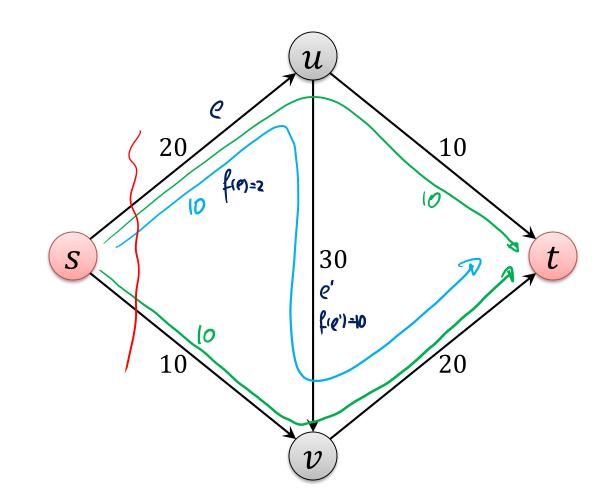
L=10

Examples:

- Highway system: edges are highways, flow is the traffic
- Computer network: edges are network links that can carry packets, nodes are switches
- Fluid network: edges are pipes that carry liquid

Algorithm Theory, WS 2016/17

Example: Flow Network



Algorithm Theory, WS 2016/17

Network Flow: Definition

- **Flow:** function $f: E \to \mathbb{R}_{\geq 0}$
- f(e) is the amount of flow carried by edge e

Capacity Constraints:

• For each edge $e \in E$, $f(e) \leq c_e$

Flow Conservation:

• For each node $v \in V \setminus \{s, t\}$,

Flow Value:

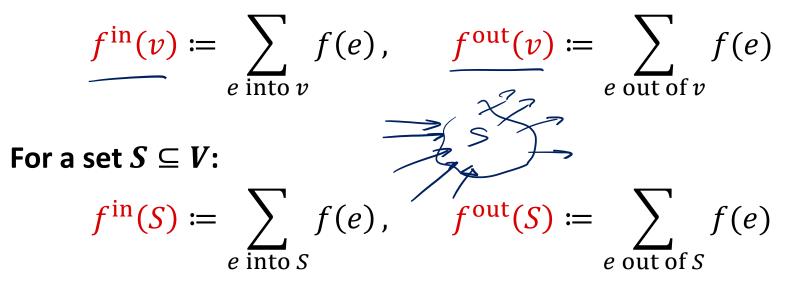
$$|f| \coloneqq \sum_{e \text{ out of } s} f((s,u)) = \sum_{e \text{ into } t} f((v,t))$$

 $\sum_{e} f(e) = \sum_{e \in \mathcal{F}} f(e)$

e out of v

Notation

We define:



Flow conservation: $\forall v \in V \setminus \{s, t\}$: $f^{in}(v) = f^{out}(v)$

Flow value: $|f| = f^{out}(s) = f^{in}(t)$

For simplicity: Assume that all capacities are positive integers

Maximum Flow:

Given a flow network, find a flow of maximum possible value

- Classical graph optimization problem
- Many applications (also beyond the obvious ones)
- Requires new algorithmic techniques

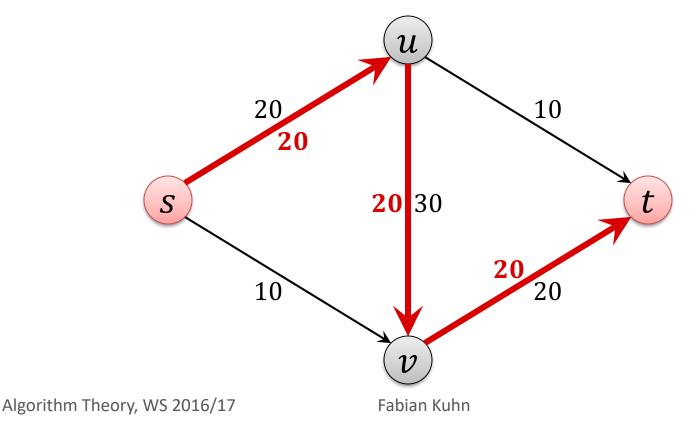
Maximum Flow: Greedy?

UN FREIBURG

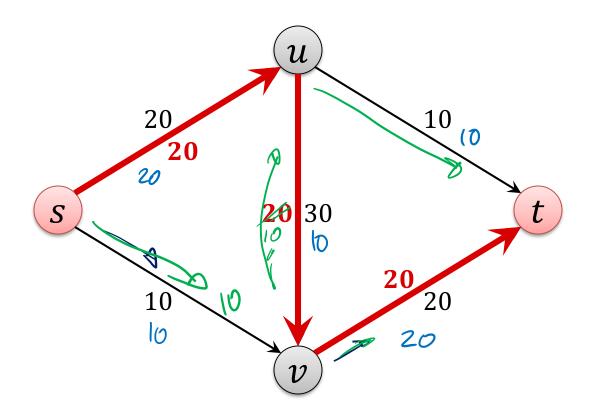
Does greedy work?

A natural greedy algorithm:

• As long as possible, find an *s*-*t*-path with free capacity and add as much flow as possible to the path



Improving the Greedy Solution



- Try to push 10 units of flow on edge (s, v)
- Too much incoming flow at v: reduce flow on edge (u, v)
- Add that flow on edge (*u*, *t*)