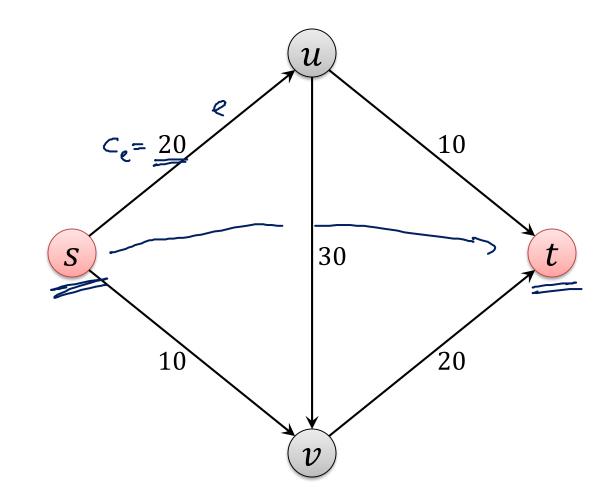


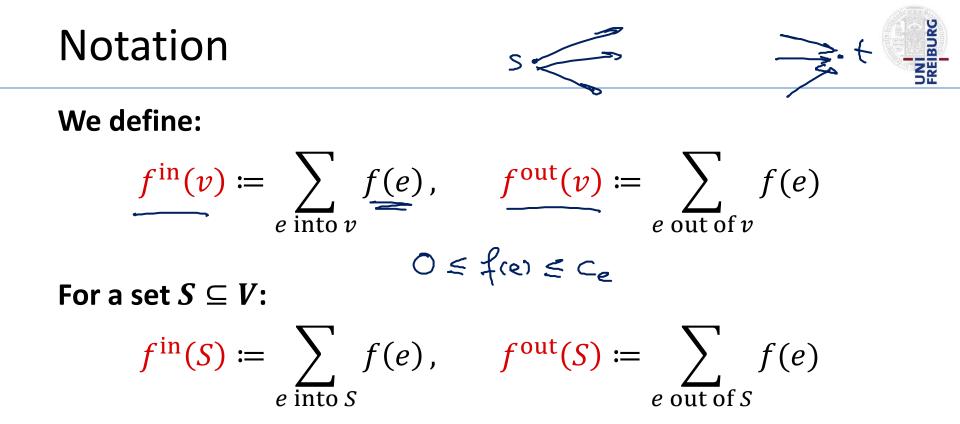
Chapter 6 Graph Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Example: Flow Network





Flow conservation: $\forall v \in V \setminus \{s, t\}$: $f^{in}(v) = f^{out}(v)$

Flow value: $|f| = f^{out}(s) = f^{in}(t)$

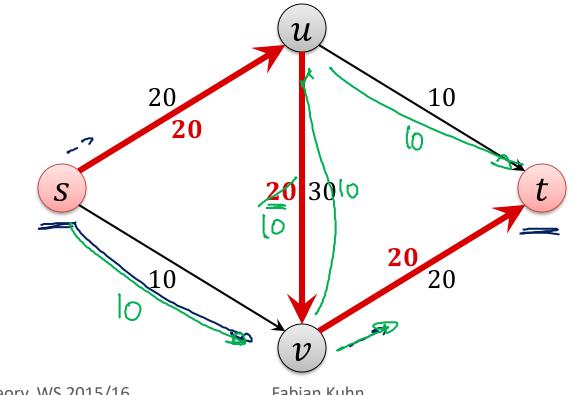
For simplicity: Assume that all capacities are positive integers

Maximum Flow: Greedy?

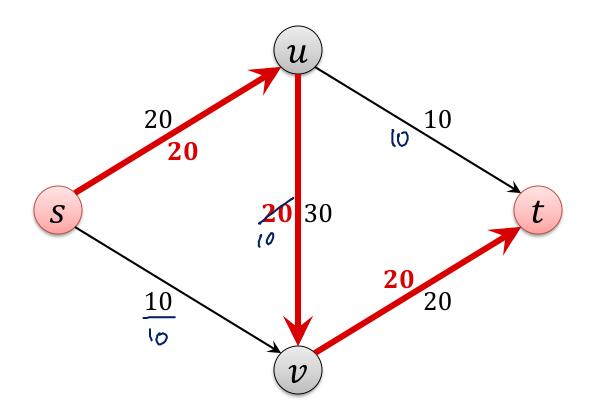
Does greedy work?

A natural greedy algorithm:

As long as possible, find an *s*-*t*-path with free capacity and • add as much flow as possible to the path

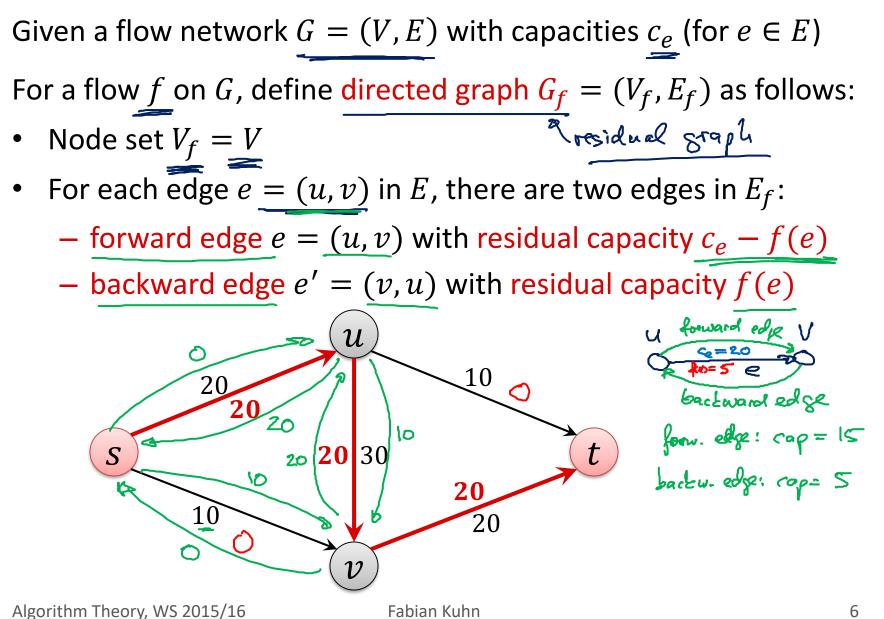


Improving the Greedy Solution

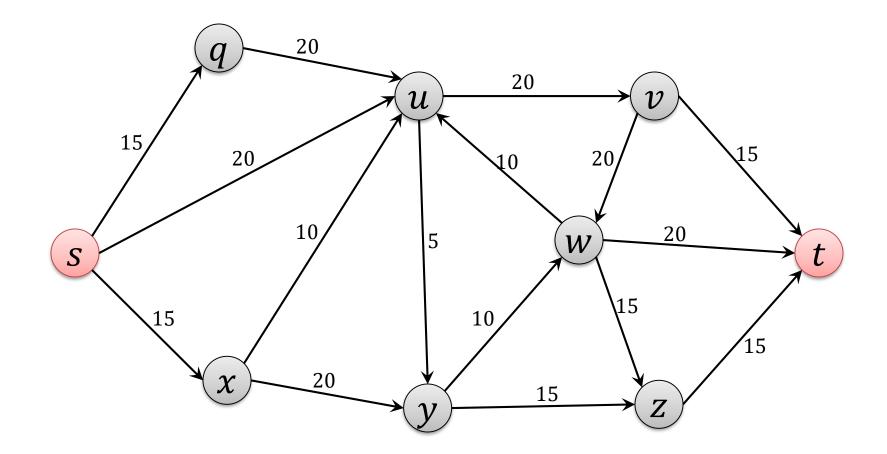


- Try to push 10 units of flow on edge (s, v)
- Too much incoming flow at v: reduce flow on edge (u, v)
- Add that flow on edge (*u*, *t*)

Residual Graph

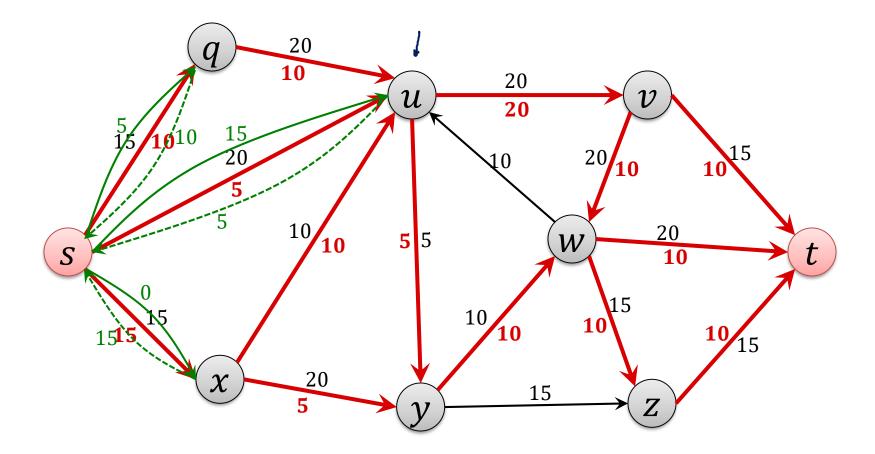


Residual Graph: Example

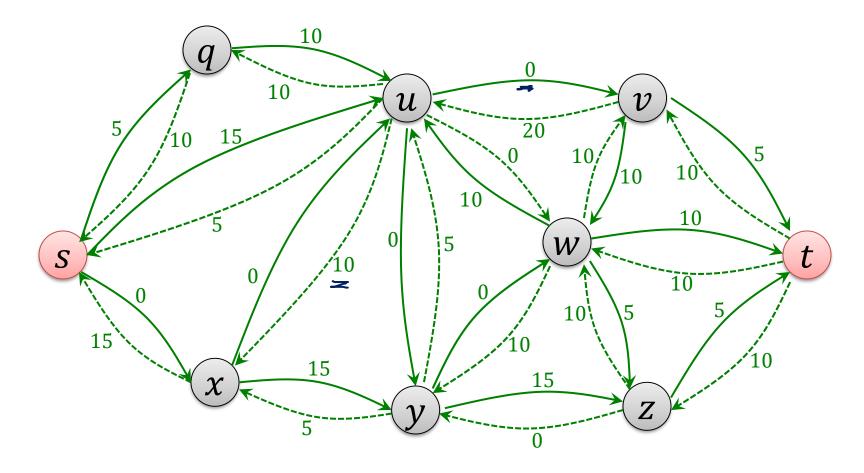


Residual Graph: Example

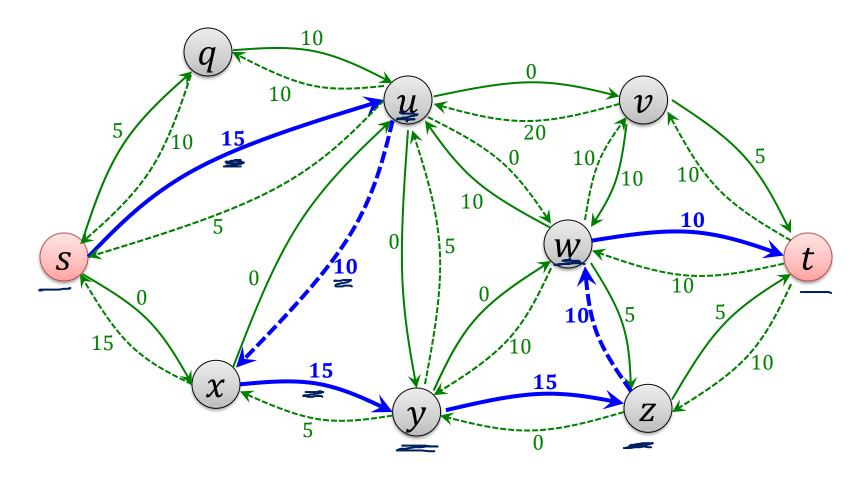
Flow f



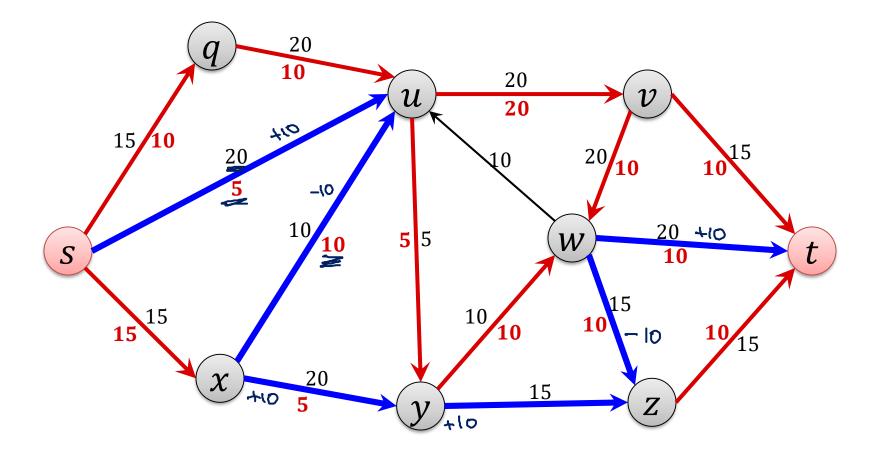
Residual Graph G_f



Residual Graph G_f

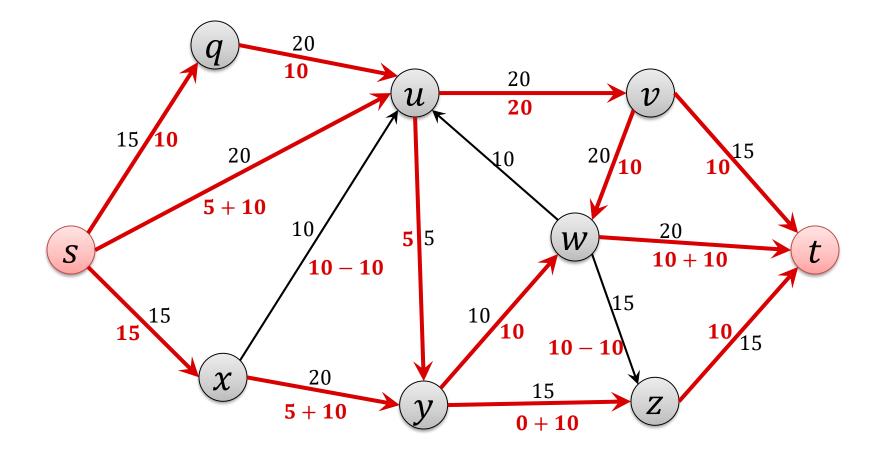


Augmenting Path



Augmenting Path

New Flow



Definition:

An augmenting path P is a (simple) <u>s-t-path</u> on the residual graph G_f on which each edge has residual capacity > 0.

bottleneck(*P*, *f*): minimum residual capacity on any edge of the augmenting path *P*

Augment flow f to get flow f':

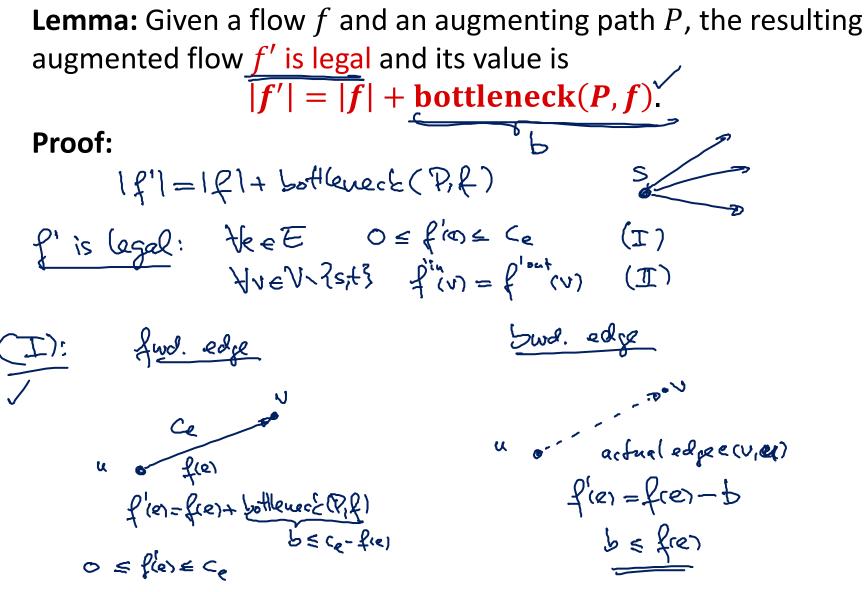
• For every forward edge $(\overline{u, v})$ on P:

 $\underline{f'((u,v))} \coloneqq \underline{f((u,v))} + \underline{bottleneck(P,f)}$

• For every backward edge $(\underline{u}, \underline{v})$ on P:

 $f'((v,u)) \coloneqq f((v,u)) - \text{bottleneck}(P,f)$

Augmented Flow



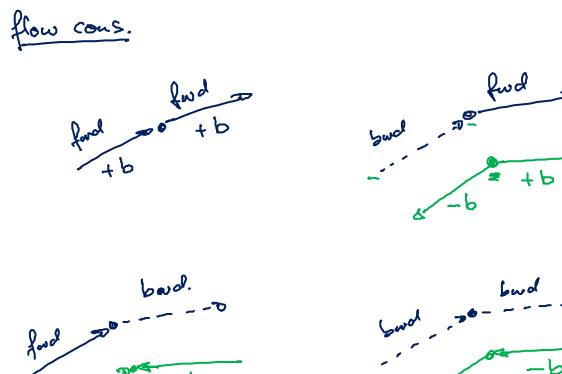
Algorithm Theory, WS 2015/16

Fabian Kuhn

Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is |f'| = |f| + bottleneck(P, f).

Proof:



Fabian Kuhn

Ford-Fulkerson Algorithm

• Improve flow using an augmenting path as long as possible:

1. Initially,
$$f(e) = 0$$
 for all edges $e \in E$, $G_f = G$
2. while there is an augmenting *s*-*t*-path *P* in G_f do
3. Let *P* be an augmenting *s*-*t*-path in G_f ;
4. $f' \coloneqq \operatorname{augment}(f, P)$; bottleneck $(P, f) > O$
5. update *f* to be *f'*:

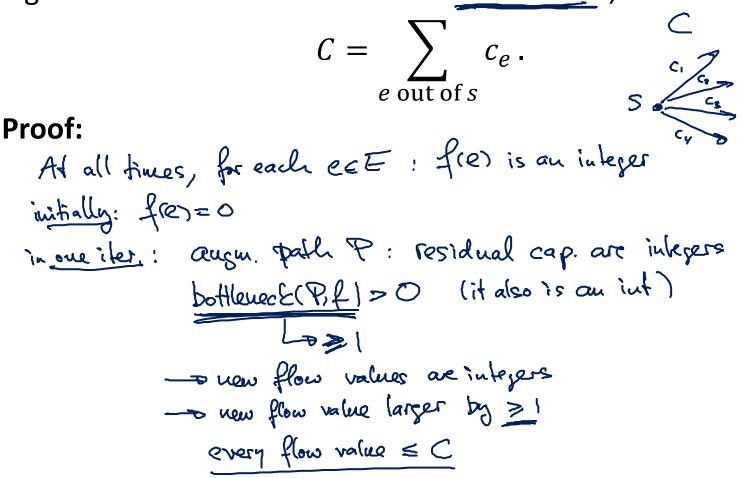
- 6. update the residual graph $G_{f'}$
- 7. **end**;

BURG

FREI

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm terminates after at most <u>*C*</u> iterations, where



Algorithm Theory, WS 2015/16

Fabian Kuhn

Ford-Fulkerson Running Time

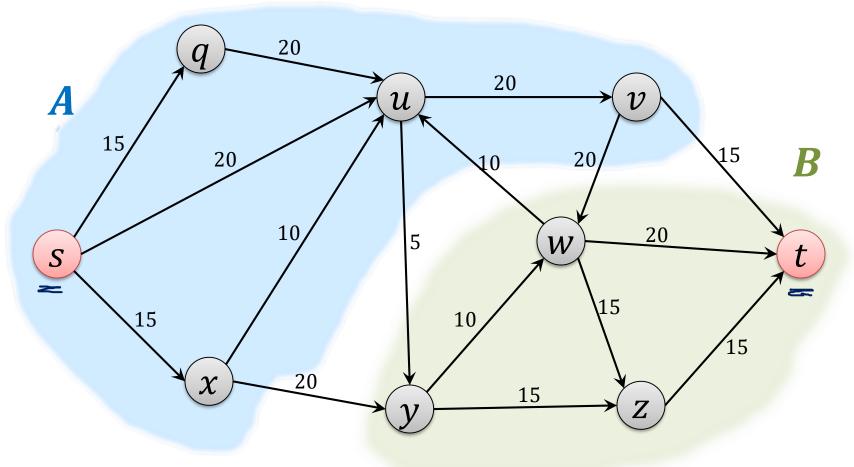
Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm can be implemented to run in O(mC) time.

Proof: <u>Clain</u>: one iter. can be compared in O(m) time 1. compute/update residual graph Gg <<u>first iter</u>: O(m) 2. find augm. path / conclude there is no augm. path Lo s-t path in Gg with res. cap. >0 Dograph travosal (DFS/BFS): O(m) time 3. update flow values : O(n) true

s-t Cuts

Definition:

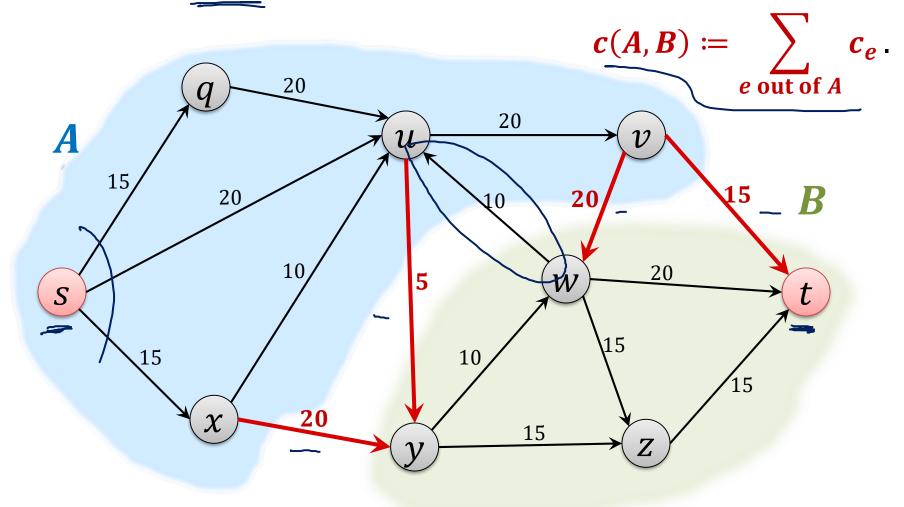
An *s*-*t* cut is a partition (A, B) of the vertex set such that $s \in A$ and $t \in B$



Cut Capacity

Definition:

The capacity c(A, B) of an s-t-cut (A, B) is defined as



Cuts and Flow Value

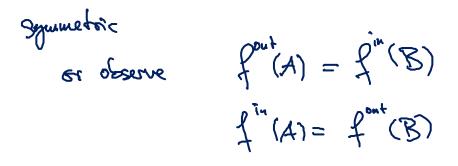
Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{\text{out}}(A) - f^{\text{in}}(A).$ **Proof:** $|f| = f(s) (= f^{in}(+))$ $|f| = f^{out}(s) - f^{in}(s)$ $= \sum_{v \in A} \left(f_{(v)}^{out} - f_{(v)}^{i_u} \right) \qquad \left(\forall v \in A \setminus \{s\} : f_{(v)} = f_{(v)}^{i_u} \right) \\ = o e x obt for v = s \qquad a'$ $= \int_{A}^{\infty h} - \int_{A}^{\infty} A$

Fabian Kuhn

Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{out}(A) - f^{in}(A)$. **Lemma:** Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{in}(B) - f^{out}(B)$.

Proof:

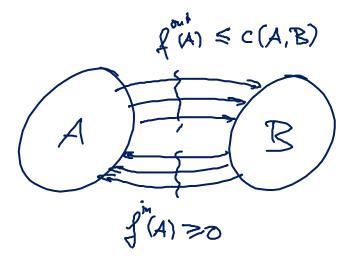


Let f be any s-t flow and (A, B) any s-t cut. Then $|f| \leq c(A, B)$. **Proof:**

Upper Bound on Flow Value

Lemma:

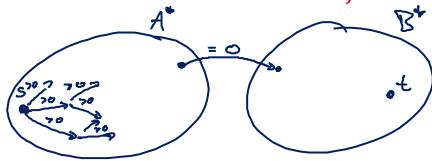
$|f| = f^{(A)} - f^{(A)}$



Lemma: If \underline{f} is an *s*-*t* flow such that there is <u>no augmenting path</u> in G_f , then there is an <u>*s*-*t*</u> cut (A^*, B^*) in *G* for which $|f| = c(A^*, B^*).$

Proof:

Define <u>A</u>*: set of nodes that can be reached from s on a path with positive residual capacities in G_f:

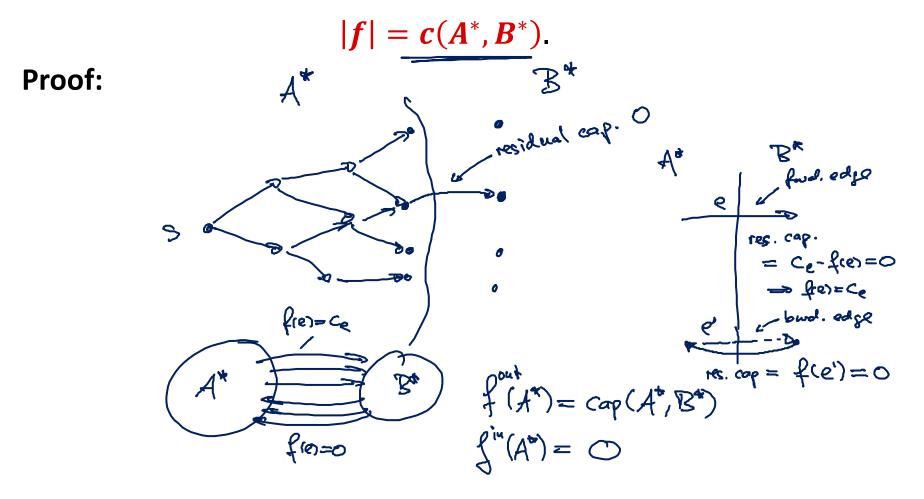


• For $B^* = V \setminus A^*$, (A^*, B^*) is an *s*-*t* cut – By definition $s \in \overline{A^*}$ and $t \notin A^*$ — because there is no angu. Path

Algorithm Theory, WS 2015/16

Fabian Kuhn

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which



Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

 $|\boldsymbol{f}| = \boldsymbol{c}(\boldsymbol{A}^*, \boldsymbol{B}^*).$

Proof:

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Proof:

$$f^*: f(ow returned by FF$$

 $\sum cont (A^*, B^*)$
 $S.t. (f^*) = c(A^*, B^*)$
for every flow $f: 1fl \leq c(A^*, B^*)$

Min-Cut Algorithm

Ford-Fulkerson also gives a min-cut algorithm:

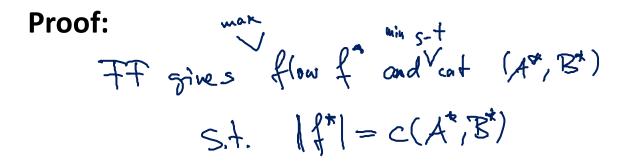
Theorem: Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time.

Proof: f maximum -> augur. path can find cat (A^{*}, B^{*}) st. $|f| = c(A^{*}, B^{*})$ Lo as before: DFS/BFS on res. graph (from s) La all under reachable from s Lo Att (set of nodes reachable from s) (A^{*}, B^{*}) is an s-t cat with min. capacity because: for every other cut (A, B), we have |f)≤ c(A, B) $|p| = c(A^*, B^*) \leq c(A, B)$

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.



Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a maximum flow f for which the flow f(e) of every edge e is an integer.

Proof:

FF gives an integes flow

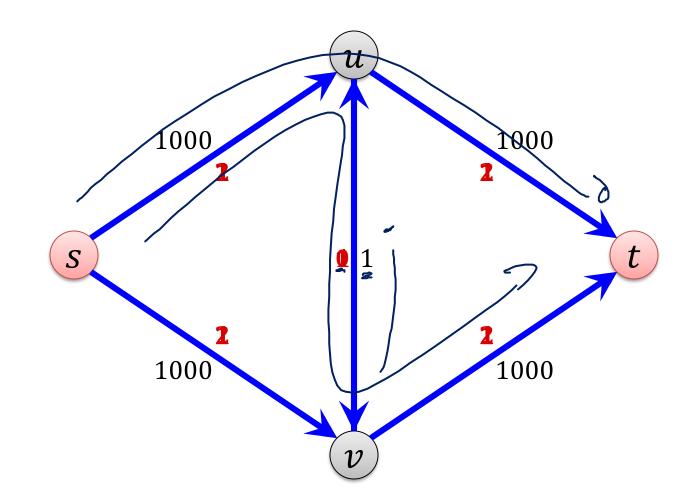
Non-Integer Capacities

What if capacities are not integers?

- rational capacities:
 - can be turned into integers by multiplying them with large enough integer
 - algorithm still works correctly
- real (non-rational) capacities:
 - not clear whether the algorithm always terminates
- even for integer capacities, time can linearly depend on the value of the maximum flow
 C ----> log

(m ⊂)

Slow Execution



• Number of iterations: 2000 (value of max. flow)

Improved Algorithm

FREIBURG

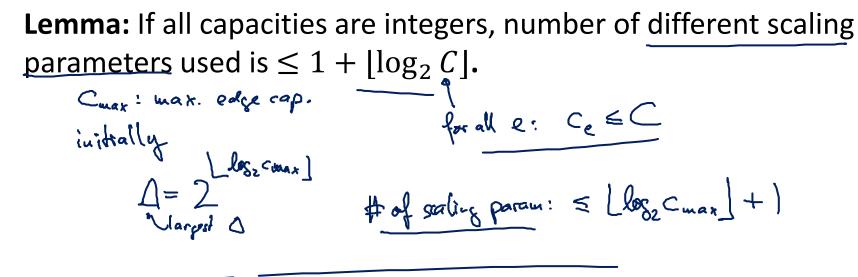
Idea: Find the best augmenting path in each step

- best: path P with maximum bottleneck(P, f)
- Best path might be rather expensive to find

 \rightarrow find almost best path

- Scaling parameter Δ : (initially, $\Delta = \max c_e$ rounded down to next power of 2")
- As long as there is an augmenting path that improves the flow by at least Δ, augment using such a path
- If there is no such path: $\Delta \coloneqq \frac{\Delta}{2}$

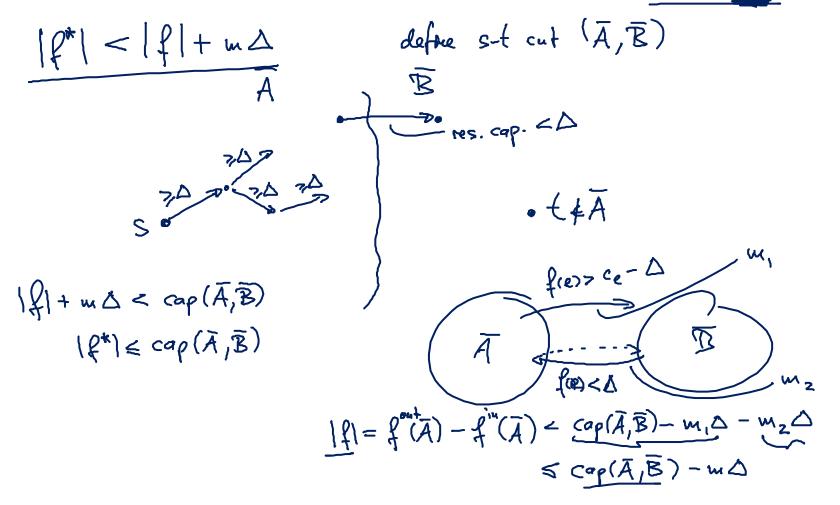
Scaling Parameter Analysis



• Δ -scaling phase: Time during which scaling parameter is Δ

Length of a Scaling Phase

Lemma: If f is the flow at the end of the Δ -scaling phase, the maximum flow in the network has value at most $|f| + m\Delta$.



Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase is at most 2*m*.

at the beginning of the ∆-scaling phase
Lo at the second of the 20-scaling phase
⇒ (f*) < (f) + 2m∆ (prev. (comma))
each augu pth improves (f) by ≥∆
Ω
Furning time:
$$O(log c) \cdot O(m) \cdot O(m) = O(m^2 log c)$$

UNI FREIBURG

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with scaling parameter and integer capacities is at most $O(m \log C)$. The algorithm can be implemented in time $O(m^2 \log C)$.

Strongly Polynomial Algorithm

- Time of regular Ford-Fulkerson algorithm with integer capacities:
- Time of algorithm with scaling parameter: $O(m^2 \log C)$
- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in *n*?
- Always picking a shortest augmenting path leads to running time

 $O(m^2n)$

works of cap. are reals

Other Algorithms

- There are many other algorithms to solve the maximum flow problem, for example:
- Preflow-push algorithm:
 - Maintains a preflow (\forall nodes: inflow \geq outflow)
 - Alg. guarantees: As soon as we have a flow, it is optimal
 - Detailed discussion in base peaks lecture
 - Running time of basic algorithm: $O(\underline{m} \cdot n^2)$
 - Doing steps in the "right" order: $O(n^3)$
- Current best known complexity: $oldsymbol{O}(oldsymbol{m}\cdotoldsymbol{n})$
 - For graphs with $m \ge n^{1+\epsilon}$ [King,Rao,Tarjan 1992/1994](for every constant $\epsilon > 0$)
- For sparse graphs with $m \le n^{16/15-\delta}$ [Orlin, 2013] war. flow in undimeted networks (1+c)-approx. wax flow. O(m. $n_{e}^{O(1)})$ Algorithm Theory, WS 2015/16 Fabian Kuhn

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique
- Examples:
 - related network flow problems
 - computation of small cuts
 - computation of matchings
 - computing disjoint paths
 - scheduling problems
 - assignment problems with some side constraints

— ...