

Chapter 6 Graph Algorithms

Algorithm Theory WS 2016/17

Fabian Kuhn

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching; A matching of maximum possible size

Perfect Matching: Matching of size n/2 (every node is matched)

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

 $|\{u, v\} \cap V_1| = 1.$

• Thus, edges are only between the two parts

Fabian Kuhn

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V|has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \ge |U'|$,

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity < n/2

1. Assume there is U' for which |N(U')| < |U'|:

Algorithm Theory, WS 2016/17

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
 A matching that cannot be extended...
- Vertex Cover: set $S \subseteq V$ of nodes such that $\forall \{u, v\} \in E, \quad \{u, v\} \cap S \neq \emptyset.$

• A vertex cover covers all edges by incident nodes

Vertex Cover vs Matching

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from *M*

Vertex Cover vs Matching

Consider a matching *M* and a vertex cover *S*

Claim: If <u>M is maximal</u> and <u>S is minimum</u>, $|S| \le 2|M|$

Proof:

• *M* is maximal: for every edge $\{u, v\} \in E$, either *u* or *v* (or both) are matched $\frac{|S|}{2} \leq |M| \leq |S^*|$

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Algorithm Theory, WS 2016/17

Fabian Kuhn

0

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$|M| \ge \frac{|M^*|}{2}$$

Proof:

$$5^*: opt. vertex cover$$

 $|M^*| \leq |S^*| \leq 2|M|$

Theorem: The set of all matched nodes of a maximal matching *M* is a vertex cover of size at most twice the size of a min. vertex cover.

Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

 Matching M can be improved using an augmenting path by switching the role of each edge along the path

Augmenting Paths

Theorem: A matching *M* of G = (V, E) is maximum if and only if there is no augmenting path. **Proof:**

• Consider non-max. matching \underline{M} and max. matching \underline{M}^* and define

 $\underline{F} := M \setminus M^*$, $\underline{F}^* := M^* \setminus M$

- Note that $\underline{F \cap F^*} = \emptyset$ and $|\underline{F}| < |\underline{F^*}|$
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- $F \cup F^*$ induces even cycles and paths

Algorithm Theory, WS 2016/17

Finding Augmenting Paths

Blossoms

Contracting Blossoms

UNI

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'

Also: The matching M can be computed efficiently from M'.

Algorithm Theory, WS 2016/17

Fabian Kuhn

Algorithm Sketch:

- 1. Build a tree for each free node
- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
 - 1. If v is an unexplored node, v is matched to some neighbor w: add w to the tree (w is now explored)
 - 2. If v is explored and in the same tree: at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow blossom found \rightarrow smaller smaller
 - If v is explored and in another tree
 at odd distance from root → ignore and move on
 at even distance from root → augmenting path found

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$. graph explorentian to find augue. path / blosscour \rightarrow DFS travessal : O(m) can contract only O(n) blossours until we find an augue. path at most $\frac{y}{2}$ augue. paths

Maximum Weight Bipartite Matching

FREIBURG

• Let's again go back to bipartite graphs...

Given: Bipartite graph $G = (\underbrace{U} \cup V, E)$ with edge weights $\underbrace{c_e \ge 0}_{\bullet}$ **Goal:** Find a matching <u>M</u> of maximum total weight

Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is **equivalent** to finding a **minimum weight perfect matching** in a complete bipartite graph.

- 1. Turn into maximum weight perfect matching
 - add dummy nodes to get two equal-sized sides
 - add edges of weight <u>0</u> to make graph complete bipartite

2. Replace weights:
$$c'_e \coloneqq \max_f \{c_f\} - c_e$$

As an Integer Linear Program "

We can formulate the problem as an integer linear program

Var. x_{uv} for every edge $(u, v) \in U \times V$ to encode matching M:

 $x_{uv} = \begin{cases} 1 & \text{if } \{u, v\} \in M \\ 0, & \text{if } \{u, v\} \notin M \end{cases}$

Fabian Kuhn

Win
$$\sum_{u,v \in U_{vv}} C_{u,v} \cdot X_{uv}$$

 $\forall u \in U : \sum_{v \in V} X_{uv} = 1$
 $\forall v \in V : \sum_{u \in U} X_{uv} = 1$
 $\forall v \in V : \sum_{u \in U} X_{uv} = 1$
 $\forall u \in V : \sum_{u \in U} X_{uv} = 1$

UNI FREIBURG

Linear Programming (LP) Relaxation

Linear Program (LP)

 Continuous optimization problem on multiple variables with a linear objective function and a set of linear side constraints

LP Relaxation of Minimum Weight Perfect Matching

• Weight c_{uv} & variable x_{uv} for ever edge $(u, v) \in U \times V$

Dual Problem

Μ

an + by

u,

- Every linear program has a dual linear program
 - The dual of a minimization problem is a maximization problem
 - Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

- Assign a variable $a_u \ge 0$ to each node $u \in U$ and a variable $b_v \ge 0$ to each node $v \in V$
- Condition: for every edge $(u, v) \in U \times V$: $(a_u + b_v \le c_{uv})$
- Given perfect matching *M*:

$$\sum_{(u,v)\in M} c_{uv} \ge \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

Dual Linear Program

• Variables $a_u \ge 0$ for $u \in U$ and $b_v \ge 0$ for $v \in V$

$$\begin{split} \max \sum_{u \in U} a_u + \sum_{v \in V} b_v \\ s.t. \\ \forall u \in U, \forall v \in V: \ a_u + b_v \leq c_{uv} \end{split}$$

• For every perfect matching *M*:

$$\sum_{(u,v)\in M} c_{uv} \geq \sum_{\substack{i \in U \\ i \in V}} a_u + \sum_{v \in V} b_v$$

Complementary Slackness

FREIBURG

• A perfect matching *M* is optimal if

$$\sum_{(u,v)\in M} c_{uv} = \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

• In that case, for every $(u, v) \in M$

$$\mathbf{w_{uv}} \coloneqq \underline{c_{uv}} - \underline{a_u} - \underline{b_v} = \mathbf{0}$$

- $\{$ In this case, M is also an optimal solution to the LP relaxation of the problem

- Every optimal LP solution can be characterized by such a property, which is then generally referred to as complementary slackness
- **Goal:** Find a dual solution a_u, b_v and a perfect matching such that the complementary slackness condition is satisfied!
 - i.e., for every matching edge (u, v), we want $w_{uv} = 0$
 - We then know that the matching is optimal!

Algorithm Theory, WS 2016/17

Fabian Kuhn

Algorithm Overview

- Start with any feasible dual solution a_u, b_v - i.e., solution satisfies that for all (u, v): $c_{uv} \ge a_u + b_v$
- Let $\underline{\underline{E}_0}$ be the edges for which $w_{uv} = 0$ - Recall that $w_{uv} = c_{uv} - a_u - b_v$
- Compute maximum cardinality matching *M* of *E*₀
- All edges (u, v) of M satisfy $w_{uv} = 0$
 - Complementary slackness if satisfied
 - If *M* is a perfect matching, we are done
- If *M* is not a perfect matching, dual solution can be improved

Marked Nodes

Define set of marked nodes L:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges $\underline{E_0}$ with $w_{uv} = 0$ optimal matching M

- L₀: unmatched nodes in U
- L: all nodes that can be reached on alternating paths starting from L₀

Marked Nodes

Define set of marked nodes L:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges E_0 with $w_{uv} = 0$

optimal matching M

L₀: unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L₀