
Chapter 6

Graph Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size Τ𝑛 2 (every node is matched)

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Bipartite Graph

Definition: A graph 𝐺 = 𝑉, 𝐸 is called bipartite iff its node set
can be partitioned into two parts 𝑉 = 𝑉1 ∪ 𝑉2 such that for each
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉1 = 1.

• Thus, edges are only between the two parts

⋅

𝑉1 𝑉2
𝐸

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

1. Assume there is 𝑈′ for which 𝑁 𝑈′ < |U′|:

𝑡𝑠

𝑼′ 𝑵(𝑼′)

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

What About General Graphs

• Can we efficiently compute a maximum matching if 𝐺 is not
bipartite?

• How good is a maximal matching?
– A matching that cannot be extended…

• Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

• A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof:

• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆

• Needs to be a different node for different edges from 𝑀

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: If 𝑀 is maximal and 𝑆 is minimum, 𝑆 ≤ 2 𝑀

Proof:

• 𝑀 is maximal: for every edge 𝑢, 𝑣 ∈ 𝐸, either 𝑢 or 𝑣 (or both)
are matched

• Every edge 𝑒 ∈ 𝐸 is “covered” by at least one matching edge

• Thus, the set of the nodes of all matching edges gives a vertex
cover 𝑆 of size 𝑆 = 2|𝑀|.

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Maximal Matching Approximation

Theorem: For any maximal matching 𝑀 and any maximum matching
𝑀∗, it holds that

𝑀 ≥
𝑀∗

2
.

Proof:

Theorem: The set of all matched nodes of a maximal matching 𝑀 is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Augmenting Paths

Consider a matching 𝑀 of a graph 𝐺 = (𝑉, 𝐸):

• A node 𝑣 ∈ 𝑉 is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in 𝐸 ∖ 𝑀 and edges in 𝑀 alternatingly.

• Matching 𝑀 can be improved using an augmenting path by
switching the role of each edge along the path

free nodes

alternating path

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Augmenting Paths

Theorem: A matching 𝑀 of 𝐺 = (𝑉, 𝐸) is maximum if and only if
there is no augmenting path.

Proof:

• Consider non-max. matching 𝑀 and max. matching 𝑀∗ and define

𝐹 ≔ 𝑀 ∖𝑀∗, 𝐹∗ ≔ 𝑀∗ ∖ 𝑀

• Note that 𝐹 ∩ 𝐹∗ = ∅ and 𝐹 < |𝐹∗|

• Each node 𝑣 ∈ 𝑉 is incident to at most one edge in both 𝐹 and 𝐹∗

• 𝐹 ∪ 𝐹∗ induces even cycles and paths

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Finding Augmenting Paths

free nodes

augmenting path

odd cycle

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Blossoms

• If we find an odd cycle…

free node 𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

blossom

𝑏

𝑐

𝑑

𝑎

𝑒
stem

𝑓

𝑢

𝑣′𝑏

𝑐

𝑑

𝑎

𝑒

contracted blossom

contract
blossom

Graph 𝑮

Graph 𝑮′

root

Matching 𝑴

𝒆 𝒆′

Matching 𝑴′ = 𝑴 ∖ 𝒆, 𝒆′

is a matching of 𝑮′.

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′
has an augmenting path w.r.t. matching 𝑀′

Also: The matching 𝑀 can be computed efficiently from 𝑀′.

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

𝑎

𝑏

𝑓′ 𝑓

𝑢

𝑎

𝑏

𝑓′

𝑣′

Note: If stem has length 0,
root 𝑣 of blossom is free
and thus also the node 𝑣′

is free in 𝐺′.

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Edmond’s Blossom Algorithm

Algorithm Sketch:

1. Build a tree for each free node

2. Starting from an explored node 𝑢 at even distance from a free
node 𝑓 in the tree of 𝑓, explore some unexplored edge {𝑢, 𝑣}:

1. If 𝑣 is an unexplored node, 𝑣 is matched to some neighbor 𝑤:
add 𝑤 to the tree (𝑤 is now explored)

2. If 𝑣 is explored and in the same tree:
at odd distance from root ignore and move on
at even distance from root blossom found

3. If 𝑣 is explored and in another tree
at odd distance from root ignore and move on
at even distance from root augmenting path found

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time 𝑂 𝑚𝑛2 .

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Maximum Weight Bipartite Matching

• Let’s again go back to bipartite graphs…

Given: Bipartite graph 𝐺 = 𝑈 ሶ∪ 𝑉, 𝐸 with edge weights 𝑐𝑒 ≥ 0

Goal: Find a matching 𝑀 of maximum total weight

𝑈 𝑉
𝐸

𝑐𝑒 ≥ 0

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turn into maximum weight perfect matching

• add dummy nodes to get two equal-sized sides

• add edges of weight 0 to make graph complete bipartite

2. Replace weights: 𝑐𝑒
′ ≔ max

𝑓
𝑐𝑓 − 𝑐𝑒

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

As an Integer Linear Program

• We can formulate the problem as an integer linear program

Var. 𝑥𝑢𝑣 for every edge (𝑢, 𝑣) ∈ 𝑈 × 𝑉 to encode matching 𝑀:

𝑥𝑢𝑣 = ቊ
1, if 𝑢, 𝑣 ∈ 𝑀
0, if 𝑢, 𝑣 ∉ 𝑀

Minimum Weight Perfect Matching

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Linear Programming (LP) Relaxation

Linear Program (LP)

• Continuous optimization problem on multiple variables with a
linear objective function and a set of linear side constraints

LP Relaxation of Minimum Weight Perfect Matching

• Weight 𝑐𝑢𝑣 & variable 𝑥𝑢𝑣 for ever edge (𝑢, 𝑣) ∈ 𝑈 × 𝑉

min

𝑢,𝑣 ∈𝑈×𝑉

𝑐𝑢𝑣 ⋅ 𝑥𝑢𝑣

s. t. 𝑎𝑏
𝑐

∀𝑢 ∈ 𝑈:

𝑣∈𝑉

𝑥𝑢𝑣 = 1,

∀𝑣 ∈ 𝑉:

𝑢∈𝑈

𝑥𝑢𝑣 = 1

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉: 𝑥𝑢𝑣 ≥ 0

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Dual Problem

• Every linear program has a dual linear program
– The dual of a minimization problem is a maximization problem

– Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

• Assign a variable 𝑎𝑢 ≥ 0 to each node 𝑢 ∈ 𝑈
and a variable 𝑏𝑣 ≥ 0 to each node 𝑣 ∈ 𝑉

• Condition: for every edge (𝒖, 𝒗) ∈ 𝑼 × 𝑽: 𝒂𝒖 + 𝒃𝒗 ≤ 𝒄𝒖𝒗

• Given perfect matching 𝑀:

𝑢,𝑣 ∈𝑀

𝑐𝑢𝑣 ≥

𝑢∈𝑈

𝑎𝑢 +

𝑣∈𝑉

𝑏𝑣

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Dual Linear Program

• Variables 𝑎𝑢 ≥ 0 for 𝑢 ∈ 𝑈 and 𝑏𝑣 ≥ 0 for 𝑣 ∈ 𝑉

max

𝑢∈𝑈

𝑎𝑢 +

𝑣∈𝑉

𝑏𝑣

𝑠. 𝑡.
∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉: 𝑎𝑢 + 𝑏𝑣 ≤ 𝑐𝑢𝑣

• For every perfect matching 𝑀:

𝑢,𝑣 ∈𝑀

𝑐𝑢𝑣 ≥

𝑢∈𝑈

𝑎𝑢 +

𝑣∈𝑉

𝑏𝑣

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Complementary Slackness

• A perfect matching 𝑀 is optimal if

𝑢,𝑣 ∈𝑀

𝑐𝑢𝑣 =

𝑢∈𝑈

𝑎𝑢 +

𝑣∈𝑉

𝑏𝑣

• In that case, for every 𝑢, 𝑣 ∈ 𝑀

𝒘𝒖𝒗 ≔ 𝑐𝑢𝑣 − 𝑎𝑢 − 𝑏𝑣 = 0

– In this case, 𝑀 is also an optimal solution to the LP relaxation of the
problem

– Every optimal LP solution can be characterized by such a property,
which is then generally referred to as complementary slackness

• Goal: Find a dual solution 𝑎𝑢, 𝑏𝑣 and a perfect matching such
that the complementary slackness condition is satisfied!
– i.e., for every matching edge 𝑢, 𝑣 , we want 𝑤𝑢𝑣 = 0

– We then know that the matching is optimal!

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Algorithm Overview

• Start with any feasible dual solution 𝑎𝑢, 𝑏𝑣
– i.e., solution satisfies that for all 𝑢, 𝑣 : 𝑐𝑢𝑣 ≥ 𝑎𝑢 + 𝑏𝑣

• Let 𝐸0 be the edges for which 𝑤𝑢𝑣 = 0
– Recall that 𝑤𝑢𝑣 = 𝑐𝑢𝑣 − 𝑎𝑢 − 𝑏𝑣

• Compute maximum cardinality matching 𝑀 of 𝐸0

• All edges 𝑢, 𝑣 of 𝑀 satisfy 𝑤𝑢𝑣 = 0
– Complementary slackness if satisfied

– If 𝑀 is a perfect matching, we are done

• If 𝑀 is not a perfect matching, dual solution can be improved

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Marked Nodes

Define set of marked nodes 𝑳:

• Set of nodes which can be reached on alternating paths on
edges in 𝐸0 starting from unmatched nodes in 𝑈

edges 𝑬𝟎 with 𝒘𝒖𝒗 = 𝟎

optimal matching 𝑴

𝑳𝟎: unmatched nodes in 𝑼

𝑳: all nodes that can be reached
on alternating paths starting
from 𝑳𝟎

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Marked Nodes

Define set of marked nodes 𝑳:

• Set of nodes which can be reached on alternating paths on
edges in 𝐸0 starting from unmatched nodes in 𝑈

edges 𝑬𝟎 with 𝒘𝒖𝒗 = 𝟎

optimal matching 𝑴

𝑳𝟎: unmatched nodes in 𝑼

𝑳: all nodes that can be reached
on alternating paths starting
from 𝑳𝟎

