IIF

# Chapter 6 <br> Graph Algorithms 

Algorithm Theory
WS 2016/17
Fabian Kuhn

## Matching

Matching: Set of pairwise non-incident edges


Maximal Matching: A matching s.t. no more edges can be added
Maximum Matching; A matching of maximum possible size


Perfect Matching: Matching of size $n / 2$ (every node is matched)

## Bipartite Graph

Definition: A graph $G=(V, E)$ is called bipartite iff its node set can be partitioned into two parts $V=V_{1} \cup V_{2}$ such that for each edge $\{u, v\} \in E$,

$$
\left|\{u, v\} \cap V_{1}\right|=1 \text {. }
$$

- Thus, edges are only between the two parts



## Hall's Marriage Theorem

Theorem: A bipartite graph $G=(U \cup V, E)$ for which $|U|=|V|$ has a perfect matching if and only if

$$
\forall \boldsymbol{U}^{\prime} \subseteq \boldsymbol{U}:\left|\boldsymbol{N}\left(\boldsymbol{U}^{\prime}\right)\right| \geq\left|\boldsymbol{U}^{\prime}\right|,
$$

where $N\left(U^{\prime}\right) \subseteq V$ is the set of neighbors of nodes in $U^{\prime}$.
Proof: No perfect matching $\Leftrightarrow$ some $s$ - $t$ cut has capacity $<n / 2$

1. Assume there is $U^{\prime}$ for which $\left|N\left(U^{\prime}\right)\right|<\left|\mathrm{U}^{\prime}\right|$ :


## What About General Graphs

- Can we efficiently compute a maximum matching if $G$ is not bipartite?
- How good is a maximal matching?
- A matching that cannot be extended...
- Vertex Cover: set $S \subseteq V$ of nodes such that

- A vertex cover covers all edges by incident nodes


## Vertex Cover vs Matching

Consider a matching $M$ and a vertex cover $S$
Claim: $|M| \leq|S|$

## Proof:

- At least one node of every edge $\{u, v\} \in M$ is in $S$
- Needs to be a different node for different edges from $M$



## Vertex Cover vs Matching

Consider a matching $M$ and a vertex cover $S$


Claim: If $M$ is maximal and $S$ is minimum, $|S| \leq 2|M|$

## Proof:

- $M$ is maximal: for every edge $\{u, v\} \in E$, either $u$ or $v$ (or both)

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover $S$ of size $|S|=2|M|$.


## Maximal Matching Approximation

Theorem: For any maximal matching $M$ and any maximum matching $M^{*}$, it holds that

$$
|M| \geq \frac{\left|M^{*}\right|}{2}
$$

Proof:

$$
\begin{aligned}
& S^{+} \text {: opt. vertex cover } \\
& \qquad\left|M^{+}\right| \leq\left|S^{*}\right| \leq 2|M|
\end{aligned}
$$

Theorem: The set of all matched nodes of a maximal matching $M$ is a vertex cover of size at most twice the size of a min. vertex cover.

## Augmenting Paths



Consider a matching $M$ of a graph $G=(V, E)$ :

- A node $v \in V$ is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \backslash M$ and edges in $M$ alternatingly.
free nodes


- Matching $M$ can be improved using an augmenting path by switching the role of each edge along the path


## Augmenting Paths

Theorem: A matching $M$ of $G=(V, E)$ is maximum if and only if there is no augmenting path.

## Proof:



- Consider non-max. matching $\underline{\underline{M}}$ and max. matching $\underline{\underline{M}}^{*}$ and define

$$
\underline{F}:=M \backslash M^{*}, \quad \underline{\underline{F}}^{*}:=M^{*} \backslash M
$$

- Note that $\underline{F \cap F^{*}=\emptyset}$ and $|F|<\left|F^{*}\right|$
- Each node $v \in V$ is incident to at most one edge in both $\underset{F}{ }$ and $\underline{F}^{*}$
- $F \cup F^{*}$ induces even cycles and paths



## Finding Augmenting Paths



## Blossoms

- If we find an odd cycle...



## Contracting Blossoms

Lemma: Graph $G$ has an augmenting path w.r.t. matching $M$ iff $G^{\prime}$ has an augmenting path w.r.t. matching $M^{\prime}$


Also: The matching $M$ can be computed efficiently from $M^{\prime}$.

## Edmond's Blossom Algorithm

## Algorithm Sketch:

1. Build a tree for each free node
2. Starting from an explored node $u$ at even distance from a free node $f$ in the tree of $f$, explore some unexplored edge $\{u, v\}$ :
3. If $v$ is an unexplored node, $v$ is matched to some neighbor $w$ :
add $w$ to the tree ( $w$ is now explored)
4. If $v$ is explored and in the same tree:
at odd distance from root $\rightarrow$ ignore and move on
at even distance from root $\rightarrow$ blossom found $\longrightarrow$ smaller graph
5. If $v$ is explored and in another tree
at odd distance from root $\rightarrow$ ignore and move on at even distance from root $\rightarrow$ augmenting path found

Running Time
Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O\left(m n^{2}\right)$. graph exploration to find angm. path / blossom

$$
\rightarrow \text { DFS traversal } \quad \therefore O(m)
$$

can contract only $O_{n}$ ) blossoms until we find an angm. path at most $\frac{4}{2}$ angus. paths

## Maximum Weight Bipartite Matching

- Let's again go back to bipartite graphs...

Given: Bipartite graph $G=(\underline{U} \dot{U} \underline{V}, E)$ with edge weights $c_{e} \geq 0$ Goal: Find a matching $\underline{M}$ of maximum total weight


## Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is equivalent to finding a minimum weight perfect matching in a complete bipartite graph.

1. Turn into maximum weight perfect matching

- add dummy nodes to get two equal-sized sides
- add edges of weight $\underline{\underline{0}}$ to make graph complete bipartite

2. Replace weights: $c_{e}^{\prime}:=\underset{\max _{f}\left\{c_{f}\right\}}{-\underline{c_{e}}}$


## As an Integer Linear Program

- We can formulate the problem as an integer linear program

Var. $x_{u v}$ for every edge $(u, v) \in U \times V$ to encode matching $M$ :

$$
x_{u v}= \begin{cases}\underline{1}, & \text { if }\{u, v\} \in M \\ \underline{\underline{0}}, & \text { if }\{u, v\} \notin M\end{cases}
$$

## Minimum Weight Perfect Matching

$$
\begin{aligned}
& \text { win } \sum_{u, v \in u v v} c_{u, v} \cdot x_{u v} \\
& \forall u \in U: \sum_{v \in v} x_{u v}=1 \\
& \forall v \in V: \sum_{u \in U} x_{u v}=1 \\
& \forall u, v: \quad x_{u v} \in\{0,1\}
\end{aligned}
$$

## Linear Programming (LP) Relaxation

## Linear Program (LP)

- Continuous optimization problem on multiple variables with a linear objective function and a set of linear side constraints


## LP Relaxation of Minimum Weight Perfect Matching

- Weight $c_{u v}$ \& variable $x_{u v}$ for ever edge $(u, v) \in U \times V$

s.t.

$$
\begin{aligned}
& \forall u \in U: \sum_{v \in V} x_{u v}=1, \\
& \forall v \in V: \sum_{u \in U} x_{u v}=1 \\
& \forall u \in U, \forall v \in V: \underbrace{x_{u v} \geq 0}_{\text {Fabian Kuhn }}
\end{aligned}
$$

## Dual Problem



- Every linear program has a dual linear program
- The dual of a minimization problem is a maximization problem
- Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

- Assign a variable $a_{u} \geq 0$ to each node $u \in U$ and a variable $\quad b_{\nu} \geq 0$ to each node $v \in V$
- Condition: for every edge $(u, v) \in U \times V: a_{u}+b_{v} \leq c_{u v}$
- Given perfect matching $M$ :

M

$$
\sum_{(u, v) \in M} c_{u v} \geq \sum_{u \in U} a_{u}+\sum_{v \in V} b_{v}
$$



## Dual Linear Program

- Variables $\underline{a_{u} \geq 0} 0$ for $u \in U$ and $\underline{b_{v}} \geq 0$ for $v \in V$

s.t.

$$
\forall u \in U, \forall v \in V: \quad a_{u}+b_{v} \leq c_{u v}
$$

- For every perfect matching $M$ :

$$
\sum_{(\underline{(u, v) \in M}} c_{u v} \underset{\rightarrow}{=} \sum_{u \in U} a_{u}+\sum_{v \in V} b_{v}
$$

## Complementary Slackness

- A perfect matching $M$ is optimal if

$$
\sum_{(u, v) \in M} c_{u v}=\sum_{u \in U} a_{u}+\sum_{v \in V} b_{v}
$$

- In that case, for every $(u, v) \in M$

$$
\underline{\boldsymbol{w}_{u v}}:=\underline{c_{u v}}-\underline{a_{u}}-\underline{b_{v}}=\underline{\underline{0}}
$$

- $\left\{_{\text {In this case, }}^{\text {n }} M\right.$ is also an optimal solution to the LP relaxation of the
- Every optimal LP solution can be characterized by such a property, which is then generally referred to as complementary slackness
- Goal: Find a dual solution $a_{u}, b_{v}$ and a perfect matching such that the complementary slackness condition is satisfied!
- i.e., for every matching edge ( $u, v$ ), we want $w_{u v}=0$
- We then know that the matching is optimal!


## Algorithm Overview

- Start with any feasible dual solution a, $a_{v}$
- i.e., solution satisfies that for all $(u, v): \underline{c_{u v} \geq a_{u}+b_{v}}$
- Let $\underline{\underline{E_{0}}}$ be the edges for which $w_{u v}=0$
- Recall that $w_{u v}=c_{u v}-a_{u}-b_{v}$
- Compute maximum cardinality matching $M$ of $\underline{\underline{E_{0}}}$
- All edges $(u, v)$ of $M$ satisfy $w_{u v}=0$
- Complementary slackness if satisfied
- If $M$ is a perfect matching, we are done
- If $M$ is not a perfect matching, dual solution can be improved


## Marked Nodes

## Define set of marked nodes $L$ :

- Set of nodes which can be reached on alternating paths on edges in $\underline{E_{0}}$ starting from unmatched nodes in $U$

edges $\underline{E_{0}}$ with $\underline{w_{u v}}=0$
optimal matching M
$L_{0}$ : unmatched nodes in $U$
$L$ : all nodes that can be reached on alternating paths starting from $L_{0}$


## Marked Nodes

## Define set of marked nodes $L$ :

- Set of nodes which can be reached on alternating paths on edges in $E_{0}$ starting from unmatched nodes in $U$

edges $E_{0}$ with $\boldsymbol{w}_{u v}=\mathbf{0}$
optimal matching $M$
$L_{0}$ : unmatched nodes in $U$
$L$ : all nodes that can be reached on alternating paths starting from $L_{0}$

