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Vertex Cover vs Matching
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Consider a matching M and a vertex cover S

Claim: |[M| < |S]

Proof:
* At least one node of every edge {u,v} € Misin S
* Needs to be a different node for different edges from M
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Augmenting Paths
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Consider a matching M of a graph ¢ = (V,E):
* Anodev €V iscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

* Matching M can be improved using an augmenting path by
switching the role of each edge along the path
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Maximum Weight Bipartite Matching
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* Let’s again go back to bipartite graphs...

Given: Bipartite graph G = (U U V, E) with edge weights c, = 0
Goal: Find a matching M of maximum total weight

C, = 0
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Minimum Weight Perfect Matching
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Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turninto maximum weight perfect matching
. add dummy nodes to get two equal-sized sides
. add edges of weight 0 to make graph complete bipartite

2. Replace weights: ¢, = m}gx{cf} — Ce
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As an Integer Linear Program
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* We can formulate the problem as an integer linear program

Var. x,,,, for every edge (u,v) € U X V to encode matching M:

v = 1, if{fu,v} eM
uw o, if {u,v} & M

Minimum Weight Perfect Matching

min E Cuv * Xuv

(u,v)eUxXV
S. L.

VuEU:zxuvzl, VvEV:Exuvzl

vev ueu
vueU,VvveV: x,, €{0,1}
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Dual Problem
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* Every linear program has a dual linear program
— The dual of a minimization problem is a maximization problem
— Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

* Assignavariable a, = 0toeachnodeu € U
and a variable b, = 0toeachnodev eV

* Condition: for every edge (u,v) e U XV: a, + b, < ¢y,

* Given perfect matching M:

z CuvZZau+va

(u,v)eEM ueu VEV
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Dual Linear Program
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* Variablesa, = 0forueUandb, =0forvel

maxz au+2bv

ueu vev
S.t.

vueU,vveV: a, + b, < cyy

* For every perfect matching M:

Z cuvziau+2bv

(u,v)EM uevu VEV
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Complementary Slackness
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* A perfect matching M is optimal if

Z cuv=2au+2bv

(u,v)eEM ueu VEV

* Inthat case, for every (u,v) € M
Wyp = Cyp — Qy — by =0

— In this case, M is also an optimal solution to the LP relaxation of the
problem

— Every optimal LP solution can be characterized by such a property,
which is then generally referred to as complementary slackness

* Goal: Find a dual solution a,, b,, and a perfect matching such
that the complementary slackness condition is satisfied!
— i.e., for every matching edge (u, v), we want w,,, = 0
— We then know that the matching is optimal!
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Algorithm Overview
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Start with any feasible dual solution a,, b,

— i.e., solution satisfies that for all (u, v): ¢y, = a, + b,

Let Ey be the edges for which w,,, = 0

— Recall that wy, = ¢y, — a, — by,

* Compute maximum cardinality matching M of E|,

All edges (u, v) of M satisfy w,,, = 0
— Complementary slackness if satisfied
— If M is a perfect matching, we are done

If M is not a perfect matching, dual solution can be improved
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Marked Nodes
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Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O

edges E, withw,, = 0

optimal matching M

Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,

O
O
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Marked Nodes
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Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O edges Ey withw,, = 0

optimal matching M
. Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,

O
O

Algorithm Theory, WS 2016/17 Fabian Kuhn 12



Marked Nodes — Vertex Cover
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Lemma:
a) There are no Ey-edges betweenU N Land V' \ L

b) Theset (U\L)U (V NL)isavertex cover of size |M|
of the graph induced by E,
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Improved Dual Solution
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Recall: all edges (u, v) between U N L and V \ L have w,,, > 0

New dual solution:

0= ol W)

;L a,, ifu € U\L
au‘_{au+5, ifueUnlL
" ._{ b, if v e V\L

v la,—68, ifvevnl

Claim: New dual solution is feasible (all wy,,, remain = 0)
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Improved Dual Solution

.
Lemma: Obj. value of the dual solution grows by & (g — IMI).
Proof:
0= i d =t N e
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Termination
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Some terminology

* Old dual solution: a,, b, Wy, = Cy, —a, — by,

* New dual solution: a,,, b,, W), =cy, —a, — b,

¢ Bo={(wv) i wyy =0}, Ef = {(w,v) : wy, = 0)

« M, M’ :max. cardinality matchings of graphs ind. By E,, E

Claim: |M'| > |M| and if |M'| = |[M]|, we can assume that M = M.
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Termination
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Lemma: The algorithm terminates in at most 0 (n?) iterations.

Proof:
* Eachiteration: M' >M or M =Mand|VNL|>|VNL|
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Min. Weight Perfect Matching: Summary _
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Theorem: A minimum weight perfect matching can be computed
in time 0(n%).

* First dual solution: e.g.,a, =0, b, = mi(rjl Cyp
ue

e Compute set Ey: 0(n?)

* Compute max. cardinality matching of graph induced by E|,
— First iteration: 0(n?) - 0(n) = 0(n3)
— Otheriterations: 0(n?) - 0(1 + |M'| — |M])
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Matching Algorithms

UNI

FREIBURG

We have seen:

 O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

* Best known running time (bipartite and general gr.): O(m\/ﬁ)

Weighted matching:
* Edges have weight, find a matching of maximum total weight
* Bipartite graphs: polynomial-time primal-dual algorithm

* General graphs: can also be solved in polynomial time
(Edmond’s algorithms is used as blackbox)
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