

Chapter 6 Graph Algorithms

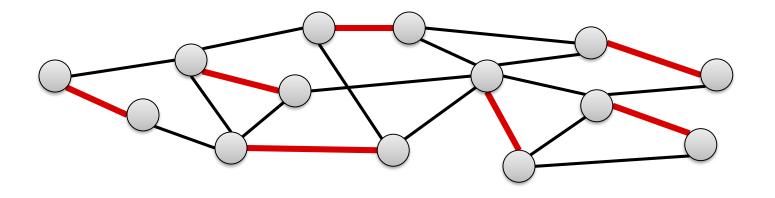
Algorithm Theory WS 2016/17

Fabian Kuhn

Vertex Cover vs Matching

Consider a matching M and a vertex cover S **Claim:** $|M| \le |S|$ for bipartile scapes : $|M^*| = |S^*|$ **Proof:**

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from *M*

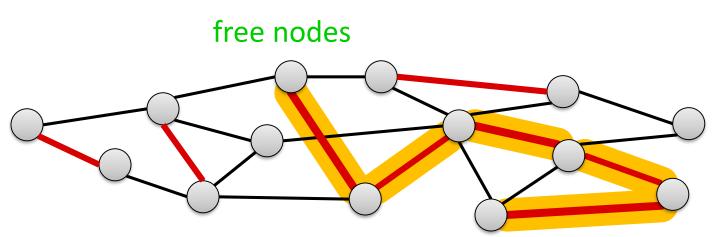


Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.



alternating path

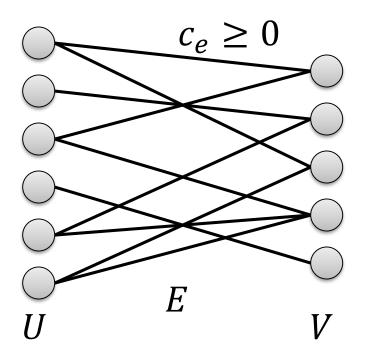
• Matching *M* can be improved using an augmenting path by switching the role of each edge along the path

Maximum Weight Bipartite Matching

FREIBURG

• Let's again go back to bipartite graphs...

Given: Bipartite graph $G = (U \cup V, E)$ with edge weights $c_e \ge 0$ **Goal:** Find a matching *M* of maximum total weight

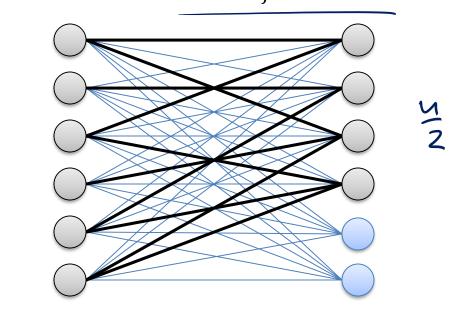


Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is **equivalent** to finding a **minimum weight perfect matching** in a complete bipartite graph.

- 1. Turn into maximum weight perfect matching
 - add dummy nodes to get two equal-sized sides
 - add edges of weight 0 to make graph complete bipartite

2. Replace weights:
$$c'_e \coloneqq \max_f \{c_f\} - c_e$$



25

As an Integer Linear Program

We can formulate the problem as an integer linear program

Var. x_{uv} for every edge $(u, v) \in U \times V$ to encode matching M:

$$x_{uv} = \begin{cases} \underline{1}, & \text{if } \{\underline{u}, v\} \in M \\ \underline{0}, & \text{if } \{u, v\} \notin M \end{cases}$$

Minimum Weight Perfect Matching $\min_{(u,v)\in U\times V} c_{uv} \cdot x_{uv}$ s.t. $\forall u \in U: \sum_{\substack{v \in V \\ i \in V}} x_{uv} = 1, \quad \forall v \in V: \sum_{u \in U} x_{uv} = 1$ $\forall u \in U, \forall v \in V: x_{uv} \in \{0,1\}$

Dual Problem

- Every linear program has a dual linear program
 - The dual of a minimization problem is a maximization problem
 - Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

- Assign a variable $a_u \ge 0$ to each node $u \in U$ and a variable $b_v \ge 0$ to each node $v \in V$
- Condition: for every edge $(u, v) \in U \times V$: $(a_u + b_v \leq c_{uv})$
- Given perfect matching <u>M</u>:

$$\sum_{(u,v)\in M} c_{uv} \ge \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

Algorithm Theory, WS 2016/17

a ...

7

 $a_{uv} \ge a_{u} + b_{v}$

Dual Linear Program

• Variables $a_u \ge 0$ for $u \in U$ and $b_v \ge 0$ for $v \in V$

$$\max \sum_{u \in U} a_u + \sum_{v \in V} b_v$$
s. t.

$$\forall u \in U, \forall v \in V: \quad a_u + b_v \leq c_{uv} \quad \Rightarrow$$
For every perfect matching M: (for every feasible dual sol.)

$$\sum_{\substack{(u,v) \in M}} c_{uv} \geq \sum_{u \in U} a_u + \sum_{v \in V} b_v$$

$$a_i \quad c_i \quad b_i \quad c_{uv} = a_u + b_v \quad for all (u,v) \in M:$$

$$a_i \quad c_i \quad b_i \quad c_{uv} = a_u + b_v \quad for all (u,v) \in M:$$

$$a_i \quad c_i \quad b_i \quad c_{uv} = a_u + b_v \quad for all (u,v) \in M:$$

•

Complementary Slackness

FREIBURG

• A perfect matching *M* is optimal if

$$\sum_{(u,v)\in M} c_{uv} = \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

$$C_{uv} \ge a_u + b_v$$

• In that case, for every $(u, v) \in M$

$$\mathbf{w}_{uv} \coloneqq c_{uv} - a_u - b_v = 0$$

- In this case, M is also an optimal solution to the LP relaxation of the problem
- Every optimal LP solution can be characterized by such a property, which is then generally referred to as complementary slackness
- **Goal:** Find a dual solution a_u, b_v and a perfect matching such that the complementary slackness condition is satisfied!
 - i.e., for every matching edge (u, v), we want $w_{uv} = 0$
 - We then know that the matching is optimal!

Algorithm Overview

- Start with any feasible dual solution a_u, b_v

 i.e., solution satisfies that for all (u, v): c_{uv} ≥ a_u + b_v
 for example: a_u = 0, b_v = 0 ∀h_vv

 Let E₀ be the edges for which w_{uv} = 0

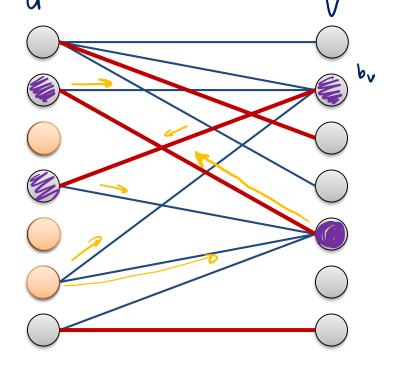
 Recall that w_{uv} = c_{uv} a_u b_v
- Compute maximum cardinality matching *M* of *E*₀
- All edges (u, v) of M satisfy $w_{uv} = 0$
 - Complementary slackness if satisfied
 - If M is a perfect matching, we are done \sim

• If *M* is not a perfect matching, dual solution can be improved

Marked Nodes

Define set of marked nodes L:

• Set of nodes which can be reached on alternating paths on edges in $\underline{E_0}$ starting from unmatched nodes in U



edges E_0 with $w_{uv} = 0$

optimal matching M

L₀: unmatched nodes in U

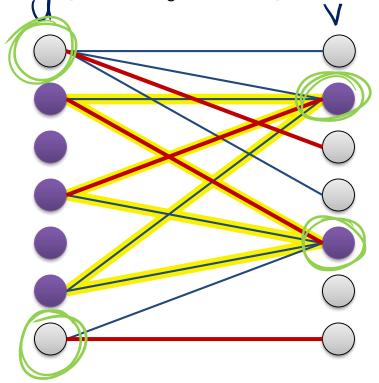
L: all nodes that can be reached on alternating paths starting from L₀

Û,

Marked Nodes

Define set of marked nodes L:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U



edges E_0 with $w_{uv} = 0$

optimal matching M

L₀: unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L₀

Servadion: all marked nodes in V are malched

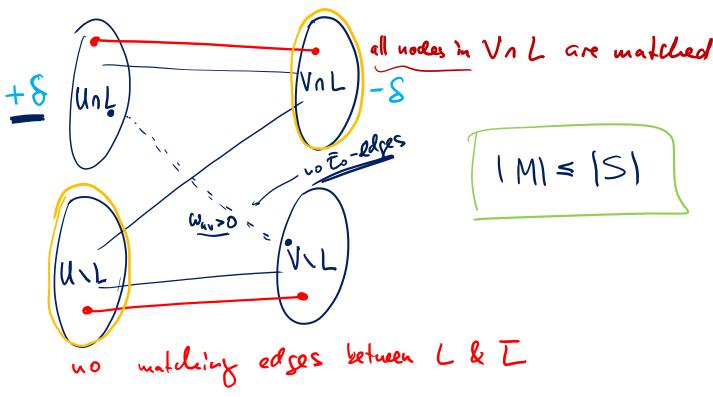
-> otherwise: augun path

Fabian Kuhn

Marked Nodes – Vertex Cover

Lemma:

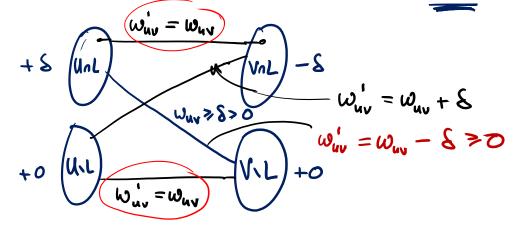
- a) There are no E_0 -edges between $U \cap L$ and $V \setminus L$
- b) The set $(U \setminus L) \cup (V \cap L)$ is a vertex cover of size |M| of the graph induced by E_0



Improved Dual Solution

Recall: all edges (u, v) between $U \cap L$ and $V \setminus L$ have $w_{uv} > 0$

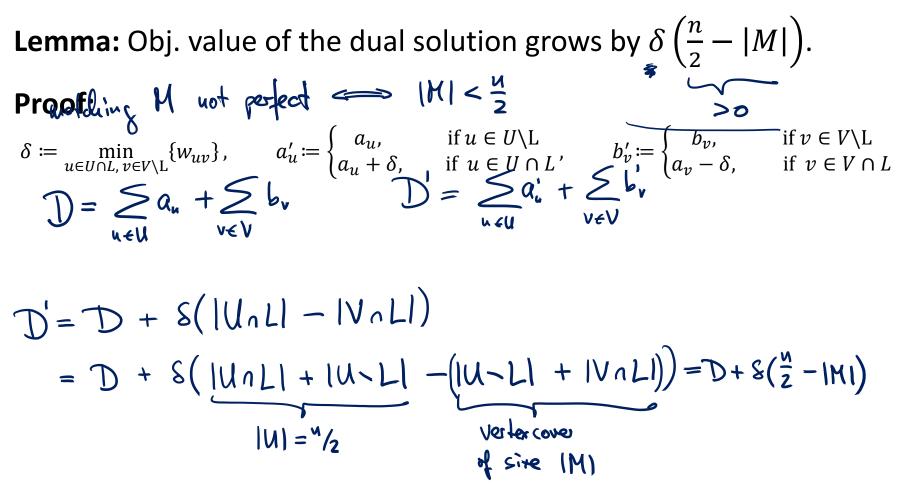
Claim: New dual solution is feasible (all w_{uv} remain ≥ 0)



Algorithm Theory, WS 2016/17

Fabian Kuhn

Improved Dual Solution



Algorithm Theory, WS 2016/17

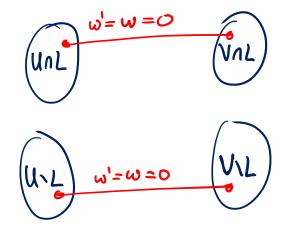
Termination

Some terminology

- Old dual solution: a_u , b_v , $w_{uv} \coloneqq c_{uv} a_u b_v$
- New dual solution: a'_u , b'_v , $w'_{uv} \coloneqq c_{uv} a'_u b'_v$
- $E_0 \coloneqq \{(u, v) : w_{uv} = 0\}, \quad E'_0 \coloneqq \{(u, v) : w'_{uv} = 0\}$
- $\underline{M}, \underline{M}'$: max. cardinality matchings of graphs ind. By E_0, E'_0

Claim: $|M'| \ge |M|$ and if |M'| = |M|, we can assume that M = M'.

Fabian Kuhn



Ľ

Termination

Lemma: The algorithm terminates in at most $O(n^2)$ iterations.

Proof: M' = M and $|V \cap L'| > |V \cap L|$ Each iteration: M' > Mor "old altourty path" are still alt. paths $\implies L \subseteq L'$ $W_{uv} = W_{uv}$ VNL UNL $\omega_{uv} = \delta$ $\omega_{uv} = \omega_{uv} - \delta = 0$ becomes a marked nocle! VL 12

Min. Weight Perfect Matching: Summary

Theorem: A minimum weight perfect matching can be computed in time $O(n^4)$.

- First dual solution: e.g., $a_u = 0$, $b_v = \min_{u \in U} c_{uv}$ $a_u = 0$, $b_v = 0$ also works
- Compute set $E_0: O(n^2)$

 $O(u^2)$ edge >

• Compute max. cardinality matching of graph induced by E_0

- First iteration:
$$Q(n^2) \cdot Q(n) = O(n^3)$$

- Other iterations: $Q(n^2) \cdot O(1 + |M'| - |M|)$
total cost when improving matching: $Q(n^3)$
total cost when $|M'| = |M| : Q(n^3)$ for each matching size
marking $\cdot Q(n^2)$ (given Eo & M)

UN FREIBURG

We have seen:

- O(mn) time alg. to compute a max. matching in *bipartite graphs*
- $O(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of **maximum total weight**
- *Bipartite graphs*: polynomial-time primal-dual algorithm
- General graphs: can also be solved in polynomial time (Edmond's algorithms is used as blackbox)