

Chapter 7 Randomization

Algorithm Theory WS 2016/17

Fabian Kuhn

Randomization

Randomized Algorithm:

 An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to

- Make algorithms faster
- Make algorithms simpler
- Make the analysis simpler
 - Sometimes it's also the opposite...
- Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
 - True in some computational models (e.g., for distributed algorithms)
 - Not clear in the standard sequential model

Contention Resolution

A simple starter example (from distributed computing)

- Allows to introduce important concepts
- ... and to repeat some basic probability theory

Setting:

- n processes, 1 resource (e.g., shared database, communication channel, ...)
- There are time slots 1,2,3, ...
- In each time slot, only one client can access the resource
- All clients need to regularly access the resource
- If client i tries to access the resource in slot t:
 - Successful iff no other client tries to access the resource in slot t

Algorithm

Algorithm Ideas:

- Accessing the resource deterministically seems hard
 - need to make sure that processes access the resource at different times
 - or at least: often only a single process tries to access the resource
- Randomized solution:

In each time slot, each process tries with probability p.

Analysis:

- How large should p be?
- How long does it take until some process i succeeds?
- How long does it take until all processes succeed?
- What are the probabilistic guarantees?

Analysis

Events:

- $\mathcal{A}_{i,t}$: process i tries to access the resource in time slot t
 - Complementary event: $\overline{\mathcal{A}_{i,t}}$

$$\mathbb{P}(\mathcal{A}_{i,t}) = p, \qquad \mathbb{P}(\overline{\mathcal{A}_{i,t}}) = 1 - p$$

• $S_{i,t}$: process i is successful in time slot t

$$S_{i,t} = \mathcal{A}_{i,t} \cap \left(\bigcap_{j \neq i} \overline{\mathcal{A}_{j,t}}\right)$$

Success probability (for process i):

Fixing p

• $\mathbb{P}(S_{i,t}) = p(1-p)^{n-1}$ is maximized for

$$p = \frac{1}{n}$$
 \Longrightarrow $\mathbb{P}(S_{i,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}$.

Asymptotics:

For
$$n \ge 2$$
: $\frac{1}{4} \le \left(1 - \frac{1}{n}\right)^n < \frac{1}{e} < \left(1 - \frac{1}{n}\right)^{n-1} \le \frac{1}{2}$

Success probability:

$$\frac{1}{en} < \mathbb{P}(\mathcal{S}_{i,t}) \leq \frac{1}{2n}$$

Time Until First Success

Random Variable T_i :

- $T_i = t$ if proc. i is successful in slot t for the first time
- Distribution:

• T_i is geometrically distributed with parameter

$$q = \mathbb{P}(S_{i,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} > \frac{1}{en}.$$

Expected time until first success:

$$\mathbb{E}[T_i] = \frac{1}{q} < en$$

Time Until First Success

Failure Event $\mathcal{F}_{i,t}$: Process i does not succeed in time slots $1, \dots, t$

• The events $S_{i,t}$ are independent for different t:

$$\mathbb{P}(\mathcal{F}_{i,t}) = \mathbb{P}\left(\bigcap_{r=1}^{t} \overline{\mathcal{S}_{i,r}}\right) = \prod_{r=1}^{t} \mathbb{P}(\overline{\mathcal{S}_{i,r}}) = \left(1 - \mathbb{P}(\mathcal{S}_{i,r})\right)^{t}$$

• We know that $\mathbb{P}(S_{i,r}) > 1/en$:

$$\mathbb{P}(\mathcal{F}_{i,t}) < \left(1 - \frac{1}{en}\right)^t < e^{-t/en}$$

Time Until First Success

No success by time $t: \mathbb{P}(\mathcal{F}_{i,t}) < e^{-t/en}$

$$t = [en]: \mathbb{P}(\mathcal{F}_{i,t}) < 1/e$$

• Generally if $t = \Theta(n)$: constant success probability

$$t \ge en \cdot c \cdot \ln n$$
: $\mathbb{P}(\mathcal{F}_{i,t}) < \frac{1}{e^{c \cdot \ln n}} = \frac{1}{n^c}$

- For success probability $1 \frac{1}{n^c}$, we need $t = \Theta(n \log n)$.
- We say that i succeeds with high probability in $O(n \log n)$ time.

Time Until All Processes Succeed

Event \mathcal{F}_t : some process has not succeeded by time t

$$\mathcal{F}_t = \bigcup_{i=1}^n \mathcal{F}_{i,t}$$

Union Bound: For events $\mathcal{E}_1, \dots, \mathcal{E}_k$,

$$\mathbb{P}\left(\bigcup_{i}^{k} \mathcal{E}_{i}\right) \leq \sum_{i}^{k} \mathbb{P}(\mathcal{E}_{i})$$

Probability that not all processes have succeeded by time t:

$$\mathbb{P}(\mathcal{F}_t) = \mathbb{P}\left(\bigcup_{i=1}^n \mathcal{F}_{i,t}\right) \leq \sum_{i=1}^n \mathbb{P}(\mathcal{F}_{i,t}) < n \cdot e^{-t/en}.$$

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first $O(n \log n)$ time slots.

Proof:

- $\mathbb{P}(\mathcal{F}_t) < n \cdot e^{-t/en}$
- Set $t = [en \cdot (c+1) \ln n]$

Remark: $\Theta(n \log n)$ time slots are necessary for all processes to succeed with reasonable probability

Primality Testing

Problem: Given a natural number $n \ge 2$, is n a prime number?

Simple primality test:

- 1. **if** n is even **then**
- 2. return (n=2)
- 3. for $i \coloneqq 1$ to $|\sqrt{n}/2|$ do
- 4. **if** 2i + 1 divides n **then**
- 5. **return false**
- 6. return true
- Running time: $O(\sqrt{n})$

A Better Algorithm?

- How can we test primality efficiently?
- We need a little bit of basic number theory...

Square Roots of Unity: In \mathbb{Z}_p^* , where p is a prime, the only solutions of the equation $x^2 \equiv 1 \pmod{p}$ are $x \equiv \pm 1 \pmod{p}$

• If we find an $x \not\equiv \pm 1 \pmod{n}$ such that $x^2 \equiv 1 \pmod{n}$, we can conclude that n is not a prime.

Algorithm Idea

Claim: Let p>2 be a prime number such that $p-1=2^sd$ for an integer $s\geq 1$ and some odd integer $d\geq 3$. Then for all $a\in\mathbb{Z}_p^*$,

$$a^d \equiv 1 \pmod{p}$$
 or $a^{2^r d} \equiv -1 \pmod{p}$ for some $0 \le r < s$.

Proof:

Fermat's Little Theorem: Given a prime number p,

$$\forall a \in \mathbb{Z}_p^* \colon a^{p-1} \equiv 1 \pmod{p}$$

Primality Test

We have: If n is an odd prime and $n-1=2^sd$ for an integer $s\geq 1$ and an odd integer $d\geq 3$. Then for all $a\in\{1,\ldots,n-1\}$,

 $a^d \equiv 1 \pmod{n}$ or $a^{2^r d} \equiv -1 \pmod{n}$ for some $0 \le r < s$.

Idea: If we find an $a \in \{1, ..., n-1\}$ such that

 $a^d \not\equiv 1 \pmod{n}$ and $a^{2^r d} \not\equiv -1 \pmod{n}$ for all $0 \le r < s$, we can conclude that n is not a prime.

- For every odd composite n>2, at least $^3/_4$ of all possible a satisfy the above condition
- How can we find such a *witness* a efficiently?

Miller-Rabin Primality Test

• Given a natural number $n \ge 2$, is n a prime number?

Miller-Rabin Test:

- 1. **if** n is even **then return** (n = 2)
- 2. compute s, d such that $n-1=2^sd$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x = a^d \mod n$;
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for r := 1 to s 1 do
- 7. $x = x^2 \mod n$;
- 8. if x = n 1 then return probably prime;
- 9. return composite;

Analysis

Theorem:

- If n is prime, the Miller-Rabin test always returns **true**.
- If n is composite, the Miller-Rabin test returns **false** with probability at least $\frac{3}{4}$.

Proof:

- If n is prime, the test works for all values of a
- If n is composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with probability at most 4^{-k} .

Running Time

Cost of Modular Arithmetic:

- Representation of a number $x \in \mathbb{Z}_n$: $O(\log n)$ bits
- Cost of adding two numbers $x + y \mod n$:

- Cost of multiplying two numbers $x \cdot y \mod n$:
 - It's like multiplying degree $O(\log n)$ polynomials
 → use FFT to compute $z = x \cdot y$

Running Time

Cost of exponentiation $x^d \mod n$:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of d: $d = \sum_{i=0}^{\lfloor \log d \rfloor} d_i 2^i$

Fast exponentiation:

```
1. y = 1;
```

2. for $i = \lfloor \log d \rfloor$ to 0 do

3.
$$y := y^2 \mod n$$
;

4. **if** $d_i = 1$ **then** $y := y \cdot x \mod n$;

5. **return** y;

• Example: $d = 22 = 10110_2$

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $O(\log^2 n \cdot \log \log n \cdot \log \log \log n)$.

- **1.** if n is even then return (n = 2)
- 2. compute s, d such that $n 1 = 2^s d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x = a^d \mod n$;
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for r := 1 to s 1 do
- 7. $x = x^2 \mod n$;
- 8. if x = n 1 then return probably prime;
- 9. return composite;

Deterministic Primality Test

- If a conjecture called the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomialtime, deterministic algorithm
 - \rightarrow It is then sufficient to try all $a \in \{1, ..., O(\log^2 n)\}$
- It has long not been proven whether a deterministic, polynomial-time algorithm exists
- In 2002, Agrawal, Kayal, and Saxena gave an $\tilde{O}(\log^{12} n)$ -time deterministic algorithm
 - Has been improved to $\tilde{O}(\log^6 n)$
- In practice, the randomized Miller-Rabin test is still the fastest algorithm