Chapter 7
Randomization

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI
I

FREIBURG

Randomized Quicksort

UNI

FREIBURG

Quicksort:

Sy <v % S, > v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;

Algorithm Theory, WS 2016/17 Fabian Kuhn

Randomized Quicksort Analysis

UNI

FREIBURG

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

Let’s just count the number of comparisons

In the partitioning step, all n — 1 non-pivot elements have to be
compared to the pivot

Number of comparisons:

n —1 + #comparisons in recursive calls

If rank of pivot is 1
recursive calls withr — 1 and n — r elements

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Law of Total Expectation

UNI

FREIBURG

e Given arandom variable X and
 asetofevents A4, ..., Aj that partition ()

— E.g., for a second random variable Y, we could have
A ={weQ:Y(w) =i}

Law of Total Expectation
ZP(A) EX | A;] ZP(Y y) - E[X|Y =]

Example:
e X:outcome of rolling a die
« Ay ={Xiseven}, A; = {Xisodd}

Algorithm Theory, WS 2016/17 Fabian Kuhn

Randomized Quicksort Analysis

UNI
f

FREIBURG

Random variables:
e (:total number of comparisons (for a given array of length n)

* R:rank of first pivot
* (p, C,: number of comparisons for the 2 recursive calls

E[C] = n — 1+ E[C,] + E[C,]

Law of Total Expectation:

E[C] = Z P(R =) - E[C|R = r]
r=1

- 2 P(R=71)- (n—1+E[C,R = 7] + E[C,|R = r])
r=1

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Randomized Quicksort Analysis

UNI
f

FREIBURG

We have seen that:

E[C] = Z PR = 1) - (n— 1+ E[Cy|R = 7] + E[C,|R = r])
r=1

Define:
* T(n): expected number of comparisons when sorting n elements
E[C] =T(n)
E[C,IR=71]=T(r —1)
E[C/IR=r]=T(n—r)

Recursion:
n

1
T(n) =;E-(n—1+T(r—1)+T(n—r))
T(0) =T(1) = 0

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

UNI

Randomized Quicksort Analysis

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n

T(n)=Z%-(n—1+T(r—1)+T(n—r)), T(0)=0

r=1

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:

4_ n
T(n)Sn—1+—-fx1nxdx
n 1 \
— _x*Inx x?
jxnx X = 5 —4

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Alternative Analysis

Array tosort:[7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Comparisons

UNI

FREIBURG

 Comparisons are only between pivot and non-pivot elements

* Every element can only be the pivot once:
— every 2 elements can only be compared once!

* W.l.o.g.,, assume that the elements to sortare 1,2, ..., n

* Elementsi andj are compared if and only if eitheri orjisa
pivot before any element h:i < h < j is chosen as pivot
— i.e., iff i is an ancestor of j or j is an ancestor of i

P(comparison betw.i and j) :j 11

Algorithm Theory, WS 2016/17 Fabian Kuhn

10

Counting Comparisons

UNI

FREIBURG

Random variable for every pair of elements (i, j):

1, if there is a comparison between i and j
Xij — .
0, otherwise

Number of comparisons: X
i<j

* Whatis E[X]?

Algorithm Theory, WS 2016/17 Fabian Kuhn

11

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

* Linearity of expectation:
For all random variables X4, ..., X,, and all a4, ..., a,, € R,

E [zn: a; X;| = i a; E|X;].

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

UNI

Randomized Quicksort Analysis

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n—-1 n n—-1n—-i+1
E[X]‘ZEE 1 —2221
L L j-i+ 1 T k
=1 j=i+1 =1 k=2

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:

* always a correct solution

* running time is a random variable

 Example: randomized quicksort, contention resolution
Monte Carlo Algorithm:

e probabilistic correctness guarantee (mostly correct)

* fixed (deterministic) running time

 Example: primality test

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Minimum Cut

UNI

FREIBURG

Reminder: Given a graph ¢ = (V,E), a cut is a partition (4, B)
of VsuchthatV = AUB,ANB=Q,A,B+0

Size of the cut (A, B): # of edges crossing the cut
* For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size A(G))

Maximum-flow based algorithm:
* Fix s, compute min s-t-cutforallt # s

» 0(m- A(G)) = O(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Best-known deterministic algorithm: O (mn + n? logn)

Algorithm Theory, WS 2016/17 Fabian Kuhn

15

UNI
FREIBURG

Edge Contractions

* In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

ok not ok

Contracting edge {u, v}:

 Replace nodes u, v by new node w
* Forall edges {u,x} and {v, x}, add an edge {w, x}
 Remove self-loops created at node w

contract {u, v}

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

UNI
f

FREIBURG

Properties of Edge Contractions

Nodes:
* After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes

2 (1,2) (1,2)
3 {5,(4,6)} 3 {3,(4,5,6)}
= (3,4,5,6)
6 (4,5,6)
Cuts:

* Assume in the contracted graph, w represents nodes S,, € VV

* The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Randomized Contraction Algorithm

UNI
FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0(n?).

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).
* There are n — 2 contractions, each can be done in time O(n).

* You will show this later.
Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Contractions and Cuts

UNI
f

FREIBURG

Lemma: If two original nodes u, v € V are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

* Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

* The claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Contractions and Cuts

UNI
f

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph

— (4',B") with
A= US“’ B’ = US”

UEA VEB
is a cut of G.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Contraction and Cuts

UNI
f

FREIBURG

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € A4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. If noedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Getting The Min Cut

UNI
f

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,
G has at least kn/2 edges.

Proof:

* Min cut has size k = all nodes have degree = k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

* Number of edgesm =1/, - > deg(v)

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:
* Consider a fixed min cut (4, B), assume (4, B) has size k

* The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

 Before contraction i, therearen + 1 — i nodes
2 andthus=> (n+ 1 —i)k/2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

k 2
n+1-Dk n+1-1i"
2

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Getting The Min Cut

UNI
f

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

* Event &;: edge contracted in step i is not crossing (4, B)

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

¢ P(ElEiNNE)=1-2/, .=

n—i—2

n—i

* No edge crossing (4, B) contracted: event £ = N2 &;

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Proof:

* Probability to not get a minimum cutin ¢ - (2) - In n iterations:

1 C.(Z).lnn —clnn 1
() e
2

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* It remains to show that each instance can be implemented in
0(n?) time.

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

