\\ \title{

Chapter 7

 \title{
Chapter 7

 Randomization}

亏픈

Algorithm Theory WS 2016/17

Fabian Kuhn

Randomized Quicksort

Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot
Running Time of sorting n elements:

- Let's just count the number of comparisons
- In the partitioning step, all $\underline{n-1}$ non-pivot elements have to be compared to the pivot
- Number of comparisons:

$\underline{n-1}+$ \#comparisons in recursive calls
- If rank of pivot is $\underline{\underline{r}}$:

recursive calls with $r-\mathbf{1}$ and $n-r$ elements

Law of Total Expectation

- Given a random variable X and
- a set of events A_{1}, \ldots, A_{k} that partition Ω
- E.g., for a second random variable Y, we could have

$$
A_{i}:=\{\omega \in \Omega: Y(\omega)=i\}
$$

Law of Total Expectation

$$
P(X=x)
$$

$$
\begin{aligned}
& \quad \mathbb{P}(X=x) \\
& \qquad \underline{\underline{\mathbb{E}[X]}]}=\sum_{i=1}^{k} \mathbb{P}\left(A_{i}\right) \cdot \mathbb{E}\left[X \mid A_{i}\right]=\sum_{y} \mathbb{P}(Y=y) \cdot \mathbb{E}[X \mid Y=y] \\
& \text { Example: } \\
& \text { - } X \text { : outcome of rolling a die } \quad X \in\{1, \ldots, 6\} \quad \mathbb{E}[X]=3.5
\end{aligned}
$$

- $A_{0}=\{X$ is even $\}, A_{1}=\{X$ is odd $\}$

$$
\therefore \quad \begin{aligned}
\mathbb{E}[X] & =\mathbb{P}\left(A_{0}\right) \cdot \mathbb{E}\left[X \mid A_{0}\right]+\mathbb{P}\left(A_{1}\right) \cdot \mathbb{E}\left[X \mid A_{1}\right] \\
& =\frac{1}{2} \cdot 4+\frac{1}{2} \cdot 3=3.5
\end{aligned}
$$

Randomized Quicksort Analysis

Random variables: $\quad C=n-1+C_{e}+C_{r}$

- C : total number of comparisons (for a given array of length $\underline{\underline{n}}$)
- R: rank of first pivot $\mathbb{E}[X+Y]=\mathbb{E}[x]+\mathbb{E}[y]$
- $\underline{\underline{C_{R}}}, C_{\underline{r}}$: number of comparisons for the 2 recursive calls

$$
\begin{gathered}
\mathbb{E}[C]= \\
\text { ctation: }
\end{gathered}
$$

$$
\begin{aligned}
& \underline{\underline{\mathbb{E}[C]}}=\sum_{r=1}^{n} \mathbb{P}(R=r) \cdot \mathbb{E}[C \mid R=r]
\end{aligned}
$$

Randomized Quicksort Analysis

We have seen that:

$$
T(n)=\mathbb{E}[(C]
$$

$$
\mathbb{E}[C]=\sum_{r=1}^{n} \mathbb{P}(R=r) \cdot(n-1+\underbrace{\mathbb{E}\left[C_{\ell} \mid R=r\right]}+\underbrace{\mathbb{E}\left[C_{r} \mid R=r\right]})
$$

Define:

$$
\begin{aligned}
\mathbb{E}[C] & =T(n) \\
\mathbb{E}\left[C_{\ell} \mid R=r\right] & =T(r-1) \\
\mathbb{E}\left[C_{r} \mid R=r\right] & =T(n-r)
\end{aligned}
$$

Recursion:

$$
\left[\begin{array}{l}
T(n)=\sum_{r=1}^{n} \frac{1}{n} \cdot(n-1+T(r-1)+T(n-r)) \\
T(0)=T(1)=0
\end{array}\right.
$$

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq \frac{2 n \ln n}{T}$. Proof:

$$
\begin{aligned}
& \underline{T(n)}=\sum_{r=1}^{n} \frac{1}{n} \cdot(\underbrace{n-1}_{n}+T(r-1)+T(n-r)), \quad \begin{array}{ll}
T(1)=0 \\
T(0)=0
\end{array} \\
& =n-1+\frac{1}{n} \cdot \sum_{i=0}^{n-1}(T(i)+T(n-i-1)) \\
& =n-1+\frac{2}{n} \cdot \sum_{i=0}^{n-1} T(i) \\
& \stackrel{(1+1)}{\leqslant n-1}+\frac{4}{n} \sum_{i=1}^{n-1} i \ln i \\
& \leqslant n-1+\frac{4}{n} \cdot \int x \ln (x) d x \\
& {[1}
\end{aligned}
$$

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof:

$$
\begin{aligned}
& T(n) \leq n-1+\frac{4}{n} \\
& T(n) \leq n-1+\frac{4}{n}\left(\frac{n^{2} \ln n}{2}-\frac{n^{2}}{4}+\frac{1}{4}\right) \\
&=n-1+2 n \ln n-n+\frac{1}{n} \\
&=2 n \ln n \underbrace{+\frac{1}{n}-1}_{<0}<2 n \ln n \\
&<E[C] \leq 2 n \ln n
\end{aligned}
$$

$$
\int x \ln x d x=\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}
$$

also possible to show

$$
\begin{aligned}
& C=O(n \log n) \text { w.h.p. } \\
& \left(\text { with pr. } 1-\frac{1}{n^{c}}\right)
\end{aligned}
$$

Alternative Analysis

Array to sort: [7] $3,1,10,14,8,12,9,4,6,5,15,2,13,11]$
Viewing quicksort run as a tree:

Comparisons

- Comparisons are only between pivot and non-pivot elements
- Every element can only be the pivot once:
\rightarrow every 2 elements can only be compared once!
- W.l.o.g., assume that the elements to sort are $\underline{1,2, \ldots, n}$
- Elements \underline{i} and \underline{j} are compared if and only if either i or j is a pivot before any element $h: i<h<j$ is chosen as pivot
- i.e., iff i is an ancestor of j or j is an ancestor of i

$$
\mathbb{P}(\underline{\text { comparison betw. } i \text { and } j})=\frac{2}{j-i+1}
$$

Counting Comparisons
Random variable for every pair of elements $(i, j): \quad(i<j)$

$$
\begin{aligned}
& \underline{X_{i j}}= \begin{cases}1, & \text { if there is a comparison between } i \text { and } j \\
0, & \text { otherwise }\end{cases} \\
& \mathbb{P}\left(X_{i j}=1\right)=\frac{2}{j-i+1} \quad \mathbb{E}\left[X_{i j}\right]=\frac{2}{j-i+1}
\end{aligned}
$$

Number of comparisons: $\underline{\underline{X}}$

$$
X=\sum_{i<j} X_{i j}
$$

- What is $\mathbb{E}[X]$?

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq 2 n \ln n$.

Proof:

- Linearity of expectation:

For all random variables $\underline{X_{1}, \ldots, X_{n}}$ and all $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i}^{n} a_{i} X_{i}\right]=\sum_{i}^{n} a_{i} \mathbb{E}\left[X_{i}\right] . \\
& \begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[\sum_{k i j} X_{i j}\right] \\
& =\sum_{i<j} \mathbb{E}\left[X_{i j}\right] \\
& =\sum_{i<j} \frac{2}{j-i+1}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
\end{aligned}
$$

Randomized Quicksort Analysis $k=j^{-i+1}$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof:

$$
\mathbb{E}[X]=2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}=2 \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{1}{k}
$$

Harmonic Series

$$
H(n) \leqslant 1+\ln n
$$

$$
\begin{aligned}
& \leq 2 \sum_{i=1}^{n-1} \sum_{k=2}^{n} \frac{1}{k} \\
& =2 \sum_{i=1}^{n-1}(H(n)-1) \\
& =2(n-1)(H(n)-1) \\
& \leq 2 n \ln n
\end{aligned}
$$

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- Example: primality test, minimum cut

Minimum Cut

Reminder: Given a graph $G=(V, E)$, a cut is a partition (A, B) of V such that $V=A \cup B, A \cap B=\emptyset, A, B \neq \varnothing$

Size of the cut $(\boldsymbol{A}, \boldsymbol{B})$: \# of edges crossing the cut

- For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\underline{\underline{\lambda(G)}}$)
Maximum-flow based algorithm:

- Fix s, compute min s - t-cut for all $t \neq s$
- $O(m \cdot \underline{\lambda(G)})=\underline{O(m n)}$ per s - t cut
- Gives an $O(m n \lambda(G))=O\left(m n^{2}\right)$-algorithm

Best-known deterministic algorithm: $O\left(m n+n^{2} \log n\right)$

Edge Contractions

- In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

Cuts:

- Assume in the contracted graph, w represents nodes $S_{w} \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $\left(S_{w}, V \backslash S_{w}\right)$

Randomized Contraction Algorithm

Algorithm:

while there are >2 nodes do
contract a uniformly random edge return cut induced by the last two remaining nodes (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1 / O\left(n^{2}\right)$.

- We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O\left(n^{2}\right)$.

- There are $n-2$ contractions, each can be done in time $O(n)$.
- You will show this later.

Contractions and Cuts

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

- Contracting an edge $\{x, y\}$ merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
- For a node u of the contracted graph, let S_{u} be the set of original nodes that have been merged into u (the nodes that u represents)
- Consider a cut (A, B) of the contracted graph
- $\left(A^{\prime}, B^{\prime}\right)$ with

$$
\underline{A}^{\prime}:=\bigcup_{u \in A} S_{u}, \quad B^{\prime}:=\bigcup_{v \in B} S_{v}
$$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut $\left(A^{\prime}, B^{\prime}\right)$.

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
2. If no edge of (A, B) is contracted, no two nodes $u \in A, v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)=1 /\left(\begin{array}{l}(2)\end{array}\right.$

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

Proof:

- Min cut has size $k \Rightarrow$ all nodes have degree $\geq k$
- A node v of degree $<k$ gives a cut $(\{v\}, V \backslash\{v\})$ of size $<k$
- Number of edges $m=1 / 2 \cdot \sum_{v} \operatorname{deg}(v) \quad \sum \operatorname{deg}(v)=2 m$

$$
m \geq \frac{1}{2} \cdot n \cdot k
$$

Getting The Min Cut $\quad 1,2, \ldots, n-2$

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.

Proof:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction i, there are $n+1-i$ nodes \rightarrow and thus $\geq \underline{(n+1-i) k / 2 \text { edges }}$

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{k}{\frac{(n+1-i) k}{2}}=\frac{2}{n+1-i} .
$$

Getting The Min Cut
Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.
Proof:

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most $2 / n+1-i$.
- Event \mathcal{E}_{i} : edge contracted in step i is not crossing (A, B)

Goal: \mathbb{P} (aby. returns $(A, B))=\mathbb{P}\left(\varepsilon_{1} \cap \varepsilon_{2} \cap \varepsilon_{3} \cap \ldots \cap \varepsilon_{n-2}\right)$

$$
\begin{aligned}
&=\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{3} \mid \varepsilon_{1} \cap \varepsilon_{2}\right) . \\
& \ldots P\left(\varepsilon_{n-2} \mid \varepsilon_{1} \cap \ldots \cap \varepsilon_{n-3}\right) \\
& \mathbb{P}(\varepsilon_{i} \mid \underbrace{\varepsilon_{1} \cap \ldots \cap \varepsilon_{i-1}}) \geqslant 1-\frac{2}{n+1-i}
\end{aligned}
$$

Getting The Min Cut
Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.
Proof:

- $\mathbb{P}\left(\mathcal{E}_{\underline{i+1}} \mid \mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{i}\right) \geq 1-2 / n-i=\frac{n-i-2}{n-i}$
- No edge crossing (A, B) contracted: event $\mathcal{E}=\bigcap_{i=1}^{n-2} \varepsilon_{i}$

$$
\begin{aligned}
\mathbb{P}\left(\varepsilon_{1} \cap \ldots \cap \varepsilon_{n-2}\right) & =\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{D}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdot \ldots \cdot \mathbb{P}\left(\varepsilon_{n-2} \mid \varepsilon_{1} \cap \ldots \cap \varepsilon_{n-3}\right) \\
& \frac{\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdot \cdots \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}}{} \\
& =\frac{2}{n(n-1)}=\frac{1}{\binom{n}{2}}
\end{aligned}
$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Proof:

$$
1+x \leq e^{x}
$$

- Probability to not get a minimum cut in $c \cdot\binom{n}{2} \cdot \underline{\ln n}$ iterations:

$$
\left(1-\frac{1}{\binom{n}{2}}\right)^{c \cdot\binom{n}{2} \cdot \ln n}<e^{-c \ln n}=\frac{1}{n^{c}}
$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- It remains to show that each instance can be implemented in $O\left(n^{2}\right)$ time.

