
Chapter 7

Randomization

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Randomized Quicksort

Quicksort:

function Quick (𝑆: sequence): sequence;

{returns the sorted sequence 𝑆}

begin

if #𝑆 ≤ 1 then return 𝑆

else { choose pivot element 𝑣 in 𝑆;

partition 𝑆 into 𝑆ℓ with elements < 𝑣,

and 𝑆𝑟 with elements > 𝑣

return

end;

𝑆

𝑆ℓ < 𝑣 𝑣 𝑆𝑟 > 𝑣

𝑣

Quick(𝑆ℓ) 𝑣 Quick(𝑆𝑟)

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting 𝑛 elements:

• Let’s just count the number of comparisons

• In the partitioning step, all 𝑛 − 1 non-pivot elements have to be
compared to the pivot

• Number of comparisons:

𝒏 − 𝟏 + #𝐜𝐨𝐦𝐩𝐚𝐫𝐢𝐬𝐨𝐧𝐬 𝐢𝐧 𝐫𝐞𝐜𝐮𝐫𝐬𝐢𝐯𝐞 𝐜𝐚𝐥𝐥𝐬

• If rank of pivot is 𝒓:
recursive calls with 𝒓 − 𝟏 and 𝒏 − 𝒓 elements

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Law of Total Expectation

• Given a random variable 𝑋 and

• a set of events 𝐴1, … , 𝐴𝑘 that partition Ω
– E.g., for a second random variable 𝑌, we could have

𝐴𝑖 ≔ 𝜔 ∈ Ω ∶ 𝑌 𝜔 = 𝑖

Law of Total Expectation

𝔼 𝑋 =

𝑖=1

𝑘

ℙ 𝐴𝑖 ⋅ 𝔼 𝑋 𝐴𝑖] =

𝑦

ℙ 𝑌 = 𝑦 ⋅ 𝔼 𝑋 𝑌 = 𝑦]

Example:

• 𝑋: outcome of rolling a die

• 𝐴0 = 𝑋 is even , 𝐴1 = 𝑋 is odd

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Randomized Quicksort Analysis

Random variables:

• 𝐶: total number of comparisons (for a given array of length 𝑛)

• 𝑅: rank of first pivot

• 𝐶ℓ, 𝐶𝑟: number of comparisons for the 2 recursive calls

𝔼 𝐶 = 𝑛 − 1 + 𝔼 𝐶ℓ + 𝔼[𝐶𝑟]

Law of Total Expectation:

𝔼 𝐶 =

𝑟=1

𝑛

ℙ 𝑅 = 𝑟 ⋅ 𝔼[𝐶|𝑅 = 𝑟]

=

𝑟=1

𝑛

ℙ 𝑅 = 𝑟 ⋅ 𝑛 − 1 + 𝔼 𝐶ℓ 𝑅 = 𝑟 + 𝔼[𝐶𝑟|𝑅 = 𝑟]

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Randomized Quicksort Analysis

We have seen that:

𝔼 𝐶 =

𝑟=1

𝑛

ℙ 𝑅 = 𝑟 ⋅ 𝑛 − 1 + 𝔼 𝐶ℓ 𝑅 = 𝑟 + 𝔼[𝐶𝑟|𝑅 = 𝑟]

Define:

• 𝑻(𝒏): expected number of comparisons when sorting 𝑛 elements

𝔼 𝐶 = 𝑇 𝑛
𝔼 𝐶ℓ 𝑅 = 𝑟 = 𝑇 𝑟 − 1
𝔼 𝐶𝑟 𝑅 = 𝑟 = 𝑇(𝑛 − 𝑟)

Recursion:

𝑻 𝒏 =

𝒓=𝟏

𝒏
𝟏

𝒏
⋅ 𝒏 − 𝟏 + 𝑻 𝒓 − 𝟏 + 𝑻 𝒏 − 𝒓

𝑻 𝟎 = 𝑻 𝟏 = 𝟎

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

𝑇 𝑛 =

𝑟=1

𝑛
1

𝑛
⋅ 𝑛 − 1 + 𝑇 𝑟 − 1 + 𝑇 𝑛 − 𝑟 , 𝑇 0 = 0

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

𝑇 𝑛 ≤ 𝑛 − 1 +
4

𝑛
⋅ න

1

𝑛

𝑥 ln 𝑥 𝑑𝑥

න𝑥 ln 𝑥 𝑑𝑥 =
𝑥2 ln 𝑥

2
−
𝑥2

4

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Alternative Analysis

Array to sort: [7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11]

Viewing quicksort run as a tree:

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Comparisons

• Comparisons are only between pivot and non-pivot elements

• Every element can only be the pivot once:
 every 2 elements can only be compared once!

• W.l.o.g., assume that the elements to sort are 1,2,… , 𝑛

• Elements 𝑖 and 𝑗 are compared if and only if either 𝑖 or 𝑗 is a
pivot before any element ℎ: 𝑖 < ℎ < 𝑗 is chosen as pivot
– i.e., iff 𝑖 is an ancestor of 𝑗 or 𝑗 is an ancestor of 𝑖

ℙ comparison betw. 𝑖 and 𝑗 =
2

𝑗 − 𝑖 + 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Counting Comparisons

Random variable for every pair of elements (𝑖, 𝑗):

𝑿𝒊𝒋 = ቊ
1, if there is a comparison between 𝑖 and 𝑗
0, otherwise

Number of comparisons: 𝑿

𝑋 =

𝑖<𝑗

𝑋𝑖𝑗

• What is 𝔼 𝑋 ?

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

• Linearity of expectation:
For all random variables 𝑋1, … , 𝑋𝑛 and all 𝑎1, … , 𝑎𝑛 ∈ ℝ,

𝔼

𝑖

𝑛

𝑎𝑖𝑋𝑖 =

𝑖

𝑛

𝑎𝑖𝔼 𝑋𝑖 .

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛
elements using randomized quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.

Proof:

𝔼 𝑋 = 2

𝑖=1

𝑛−1

𝑗=𝑖+1

𝑛
1

𝑗 − 𝑖 + 1
= 2

𝑖=1

𝑛−1

𝑘=2

𝑛−𝑖+1
1

𝑘

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Types of Randomized Algorithms

Las Vegas Algorithm:

• always a correct solution

• running time is a random variable

• Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

• probabilistic correctness guarantee (mostly correct)

• fixed (deterministic) running time

• Example: primality test

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Minimum Cut

Reminder: Given a graph 𝐺 = 𝑉, 𝐸 , a cut is a partition (𝐴, 𝐵)
of 𝑉 such that 𝑉 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 = ∅, 𝐴, 𝐵 ≠ ∅

Size of the cut (𝑨, 𝑩): # of edges crossing the cut

• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 𝜆(𝐺))

Maximum-flow based algorithm:

• Fix 𝑠, compute min 𝑠-𝑡-cut for all 𝑡 ≠ 𝑠

• 𝑂 𝑚 ⋅ 𝜆 𝐺 = 𝑂(𝑚𝑛) per 𝑠-𝑡 cut

• Gives an O 𝑚𝑛𝜆 𝐺 = 𝑂(𝑚𝑛2)-algorithm

Best-known deterministic algorithm: 𝑂 𝑚𝑛 + 𝑛2 log 𝑛

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Edge Contractions

• In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

Contracting edge {𝒖, 𝒗}:

• Replace nodes 𝑢, 𝑣 by new node 𝑤

• For all edges {𝑢, 𝑥} and {𝑣, 𝑥}, add an edge {𝑤, 𝑥}

• Remove self-loops created at node 𝑤

not okok

𝒂

𝒖

𝒗

𝒄

𝒃

𝒂
𝒘 𝒄

𝒃

contract {𝒖, 𝒗}

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Properties of Edge Contractions

Nodes:

• After contracting {𝑢, 𝑣}, the new node represents 𝑢 and 𝑣

• After a series of contractions, each node represents a subset of
the original nodes

Cuts:

• Assume in the contracted graph, 𝑤 represents nodes 𝑆𝑤 ⊂ 𝑉

• The edges of a node 𝑤 in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut 𝑆𝑤 , 𝑉 ∖ 𝑆𝑤

𝟏 𝟐

𝟑

𝟒 𝟓

𝟔

𝟑

𝟒 𝟓

𝟔

(𝟏, 𝟐) (𝟏, 𝟐)

𝟑

𝟓
(𝟒, 𝟔)

(𝟏, 𝟐)

(𝟒, 𝟓, 𝟔)

𝟑

(𝟏, 𝟐)

(𝟑, 𝟒, 𝟓, 𝟔)

{𝟏, 𝟐} {𝟒, 𝟔} {𝟓, (𝟒, 𝟔)} {𝟑, (𝟒, 𝟓, 𝟔)}

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do

contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least Τ1 𝑂(𝑛2).

• We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 𝑂(𝑛2).

• There are 𝑛 − 2 contractions, each can be done in time 𝑂(𝑛).

• You will show this later.

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Contractions and Cuts

Lemma: If two original nodes 𝑢, 𝑣 ∈ 𝑉 are merged into the same
node of the contracted graph, there is a path connecting 𝑢 and 𝑣
in the original graph s.t. all edges on the path are contracted.

Proof:

• Contracting an edge {𝑥, 𝑦} merges the node sets represented by
𝑥 and 𝑦 and does not change any of the other node sets.

• The claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

• All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph 𝐺 as follows:
– For a node 𝑢 of the contracted graph, let 𝑆𝑢 be the set of original nodes

that have been merged into 𝑢 (the nodes that 𝑢 represents)

– Consider a cut (𝐴, 𝐵) of the contracted graph

– 𝐴′, 𝐵′ with

𝐴′ ≔ራ

𝑢∈𝐴

𝑆𝑢 , 𝐵′ ≔ራ

𝑣∈𝐵

𝑆𝑣

is a cut of 𝐺.

– The edges crossing cut (𝐴, 𝐵) are in one-to-one correspondence with the
edges crossing cut (𝐴′, 𝐵′).

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (𝐴, 𝐵) of the input
graph 𝐺 if and only if it never contracts an edge crossing (𝐴, 𝐵).

Proof:

1. If an edge crossing (𝐴, 𝐵) is contracted, a pair of nodes 𝑢 ∈ 𝐴,
𝑣 ∈ 𝑉 is merged into the same node and the algorithm outputs
a cut different from (𝐴, 𝐵).

2. If no edge of (𝐴, 𝐵) is contracted, no two nodes 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
end up in the same contracted node because every path
connecting 𝑢 and 𝑣 in 𝐺 contains some edge crossing 𝐴, 𝐵

In the end there are only 2 sets output is (𝐴, 𝐵)

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph 𝐺 (no self-loops) is 𝑘,
𝐺 has at least Τ𝑘𝑛 2 edges.

Proof:

• Min cut has size 𝑘⟹ all nodes have degree ≥ 𝑘
– A node 𝑣 of degree < 𝑘 gives a cut 𝑣 , 𝑉 ∖ 𝑣 of size < 𝑘

• Number of edges 𝑚 = Τ1 2 ⋅ σ𝑣 deg(𝑣)

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘

• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing
(𝐴, 𝐵) gets contracted.

• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes
 and thus ≥ Τ𝑛 + 1 − 𝑖 𝑘 2 edges

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most

𝑘

𝑛 + 1 − 𝑖 𝑘
2

=
2

𝑛 + 1 − 𝑖
.

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most Τ2 𝑛+1−𝑖.

• Event ℰ𝑖: edge contracted in step 𝑖 is not crossing (𝐴, 𝐵)

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• ℙ ℰ𝑖+1|ℰ1 ∩⋯∩ ℰ𝑖 ≥ 1 − Τ2 𝑛−𝑖 =
𝑛−𝑖−2

𝑛−𝑖

• No edge crossing (𝐴, 𝐵) contracted: event ℰ = 𝑖=1ځ
𝑛−2ℰ𝑖

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in 𝑐 ⋅
𝑛
2

⋅ ln 𝑛 iterations:

1 −
1
𝑛
2

𝑐⋅
𝑛
2
⋅ln 𝑛

< 𝑒−𝑐 ln 𝑛 =
1

𝑛𝑐

Corollary: The contraction algorithm allows to compute a minimum
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• It remains to show that each instance can be implemented in
𝑂 𝑛2 time.

