
Chapter 7
Randomization

Algorithm Theory

WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Randomized Contraction Algorithm
Algorithm:

 while there are > 2 nodes do
 contract a uniformly random edge
 return cut induced by the last two remaining nodes
 (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a specific

minimum cut with probability at least
2

𝑛(𝑛−1)
.

Theorem: The random contraction algorithm can be implemented
in time 𝑂(𝑛2).
• There are 𝑛 − 2 contractions, each can be done in time 𝑂(𝑛).

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Implementing Edge Contractions
Edge Contraction:
• Given: multigraph with 𝑛 nodes

– assume that set of nodes is {1, … , 𝑛}
• Goal: contract edge 𝑢, 𝑣
Data Structure
• We can use either adjacency lists or an adjacency matrix
• Entry in row 𝑖 and column 𝑗: #edges between nodes 𝑖 and 𝑗
• Example:

 𝟏 𝟏

 𝟒 𝟒

 𝟐 𝟐

 𝟓 𝟓

 𝟑 𝟑
𝐴 =

0 2 0
2 0 1
0 1 0

1 0
1 0
0 1

1 1 0
0 0 1

0 3
3 0

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

Contracting An Edge
Example: Contract one of the edges between 3 and 5

1 2 3 4 5 6 7

1 0 1 0 3 0 0 0

2 1 0 1 0 1 2 0

3 0 1 0 0 2 2 0

4 3 0 0 0 1 0 0

5 0 1 2 1 0 1 1

6 0 2 2 0 1 0 1

7 0 0 0 0 1 1 0

1 1

2 2

4 4

3 3

5 5

7 7

6 6

{3,5}

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Contracting An Edge
Example: Contract one of the edges between 3 and 5

1 2 3 4 5 6 7

1 0 1 0 3 0 0 0

2 1 0 1 0 1 2 0

3 0 1 0 0 2 2 0

4 3 0 0 0 1 0 0

5 0 1 2 1 0 1 1

6 0 2 2 0 1 0 1

7 0 0 0 0 1 1 0

1 1

2 2

4 4

3 3 35 35

7 7

6 6

{3,5} 0 2 1 3 1

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Contracting An Edge
Example: Contract one of the edges between 3 and 5

1 2 35 4 6 7

1 0 1 0 3 0 0

2 1 0 2 0 2 0

35 0 2 0 1 3 1

4 3 0 1 0 0 0

6 0 2 3 0 0 1

7 0 0 1 0 1 0

1 1

2 2

4 4

3 3 35 35

7 7

6 6

{3,5} 0 2 1 3 1

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Contracting an Edge
Claim: Given the adjacency matrix of an 𝑛-node multigraph and
an edge {𝑢, 𝑣}, one can contract the edge 𝑢, 𝑣 in time 𝑂(𝑛).

• Row/column of combined node {𝑢, 𝑣} is sum of rows/columns

of 𝑢 and 𝑣

• Row/column of 𝑢 can be replaced by new row/column of
combined node {𝑢, 𝑣}

• Swap row/column of 𝑣 with last row/column in order to have
the new (𝑛 − 1)-node multigraph as a contiguous
𝑛 − 1 × (𝑛 − 1) submatrix

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

Finding a Random Edge
• We need to contract a uniformly random edge
• How to find a uniformly random edge in a multigraph?

– Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 𝑂 𝑛2 .

Idea for more efficient algorithm:
• First choose a random node 𝑢

– with probability proportional to the degree (#edges) of 𝑢

• Pick a random edge of 𝑢
– only need to look at one row Æ time 𝑂 𝑛

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

Choose a Random Node
Edge Sampling:
1. Choose a node 𝑢 ∈ 𝑉 with probability

deg (𝑢)
 deg (𝑣)𝑣∈𝑉

=
deg (𝑢)
2𝑚

2. Choose a uniformly random edge of 𝑢

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

Choose a Random Node

• We need to choose a random node 𝑢 with probability deg 𝑢
2𝑚

• Keep track of the number of edges 𝑚 and maintain an array with
the degrees of all the nodes
– Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;
for all nodes 𝑢 ∈ 𝑉:
 with probability deg 𝑢

2𝑚−degsum
:

 pick node 𝑢; terminate
 else
 degsum += deg 𝑢

Algorithm Theory, WS 2015/16 Fabian Kuhn 23

Randomized Min Cut Algorithm
Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• One instance consists of 𝑛 − 2 edge contractions

• Each edge contraction can be carried out in time 𝑂(𝑛)
– Actually: 𝑂 current #nodes

• Time per instance of the contraction algorithm: 𝑂 𝑛2

Algorithm Theory, WS 2015/16 Fabian Kuhn 24

Can We Do Better?
• Time 𝑂(𝑛4 log 𝑛) is not very spectacular, a simple max flow

based implementation has time 𝑂 𝑛4 .

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known

deterministic algorithm.

1. It allows to obtain strong statements about the distribution

of cuts in graphs.

Algorithm Theory, WS 2015/16 Fabian Kuhn 25

Better Randomized Algorithm
Recall:
• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘
• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing

(𝐴, 𝐵) gets contracted.
• Throughout the algorithm, the edge connectivity is at least 𝑘

and therefore each node has degree ≥ 𝑘
• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes and thus at

least 𝑛 + 1 − 𝑖 𝑘 2 edges
• If no edge crossing (𝐴, 𝐵) is contracted before, the probability

to contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most

𝑘
𝑛 + 1 − 𝑖 𝑘

2

=
2

𝑛 + 1 − 𝑖 .

Algorithm Theory, WS 2015/16 Fabian Kuhn 26

Improving the Contraction Algorithm
• For a specific min cut (𝐴, 𝐵), if (𝐴, 𝐵) survives the first 𝑖

contractions,

ℙ edge crossing 𝐴, 𝐵 in contraction 𝑖 + 1 ≤
2

𝑛 − 𝑖 .

• Observation: The probability only gets large for large 𝑖

• Idea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.

Algorithm Theory, WS 2015/16 Fabian Kuhn 27

Safe Contraction Phase
Lemma: A given min cut (𝐴, 𝐵) of an 𝑛-node graph 𝐺 survives the
first 𝑛 − 𝑛

2 + 1 contractions, with probability > 1
2 .

Proof:
• Event ℰ𝑖: cut (𝐴, 𝐵) survives contraction 𝑖
• Probability that (𝐴, 𝐵) survives the first 𝑛 − 𝑡 contractions:

Algorithm Theory, WS 2015/16 Fabian Kuhn 28

Better Randomized Algorithm
Let’s simplify a bit:
• Pretend that 𝑛/ 2 is an integer (for all 𝑛 we will need it).
• Assume that a given min cut survives the first 𝑛 − 𝑛

2
contractions with probability ≥ 1

2 .

𝐜𝐨𝐧𝐭𝐫𝐚𝐜𝐭(𝑮, 𝒕):
• Starting with 𝑛-node graph 𝐺, perform 𝑛 − 𝑡 edge contractions

such that the new graph has 𝑡 nodes.

𝐦𝐢𝐧𝐜𝐮𝐭(𝑮):

1. 𝑋1 ≔ mincut contract 𝐺, 𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, 𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

Algorithm Theory, WS 2015/16 Fabian Kuhn 29

Success Probability
𝐦𝐢𝐧𝐜𝐮𝐭(𝑮):

1. 𝑋1 ≔ mincut contract 𝐺, 𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, 𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

𝑷(𝒏): probability that the above algorithm returns a min cut when
 applied to a graph with 𝑛 nodes.

• Probability that 𝑋1 is a min cut ≥

Recursion:

Algorithm Theory, WS 2015/16 Fabian Kuhn 30

Success Probability
Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1 log2 𝑛 .

Proof (by induction on 𝑛):

𝑃 𝑛 = 𝑃
𝑛
2

−
1
4 ⋅ 𝑃

𝑛
2

2

, 𝑃 2 = 1

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Running Time

1. 𝑋1 ≔ mincut contract 𝐺, 𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, 𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

Recursion:
• 𝑇(𝑛): time to apply algorithm to 𝑛-node graphs

• Recursive calls: 2𝑇 𝑛 2

• Number of contractions to get to 𝑛 2 nodes: 𝑂 𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑂 𝑛2 , 𝑇 2 = 𝑂(1)

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Running Time
Theorem: The running time of the recursive, randomized min cut
algorithm is 𝑂(𝑛2 log 𝑛).

Proof:
• Can be shown in the usual way, by induction on 𝑛

Remark:
• The running time is only by an 𝑂(log 𝑛)-factor slower than

the basic contraction algorithm.
• The success probability is exponentially better!

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Number of Minimum Cuts
• Given a graph 𝐺, how many minimum cuts can there be?

• Or alternatively: If 𝐺 has edge connectivity 𝑘, how many ways

are there to remove 𝑘 edges to disconnect 𝐺?

• Note that the total number of cuts is large.

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

Number of Minimum Cuts
Example: Ring with 𝑛 nodes

• Minimum cut size: 2

• Every two edges
induce a min cut

• Number of edge pairs:

𝑛
2

• Are there graphs with

more min cuts?

• Minimum cut size: 2

• Every two edges
induce a min cut

• Number of edge pairs:

𝑛
2

• Are there graphs with

more min cuts?

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Number of Min Cuts

Theorem: The number of minimum cuts of a graph is at most 𝑛2 .

Proof:
• Assume there are 𝑠 min cuts

• For 𝑖 ∈ 1,… , 𝑠 , define event 𝒞𝑖:

𝒞𝑖 ≔ {basic contraction algorithm returns min cut 𝑖}

• We know that for 𝑖 ∈ {1,… , 𝑠}: ℙ 𝒞𝑖 ≥ 1
𝑛
2

• Events 𝒞1,… , 𝒞𝑠 are disjoint:

ℙ 𝒞𝑖

𝑠

𝑖=1

= ℙ 𝒞𝑖

𝑠

𝑖=1

≥
𝑠
𝑛
2

