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Randomized Contraction Algorithm 
Algorithm: 
 

    while there are > 2 nodes do 
          contract a uniformly random edge 
    return cut induced by the last two remaining nodes 
                 (cut defined by the original node sets represented by the last 2 nodes)  
 

Theorem: The random contraction algorithm returns a specific 

minimum cut with probability at least 
2

𝑛(𝑛−1)
. 

 
 

Theorem: The random contraction algorithm can be implemented 
in time 𝑂(𝑛2). 
• There are 𝑛 − 2 contractions, each can be done in time 𝑂(𝑛). 
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Implementing Edge Contractions 
Edge Contraction: 
• Given: multigraph with 𝑛 nodes 

– assume that set of nodes is {1, … , 𝑛} 
• Goal: contract edge 𝑢, 𝑣  
Data Structure 
• We can use either adjacency lists or an adjacency matrix 
• Entry in row 𝑖 and column 𝑗: #edges between nodes 𝑖 and 𝑗 
• Example: 

 

 𝟏  𝟏 

 𝟒  𝟒 

 𝟐  𝟐 

 𝟓  𝟓 

 𝟑  𝟑 
𝐴 =

0 2 0
2 0 1
0 1 0

1 0
1 0
0 1

1 1 0
0 0 1

0 3
3 0
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Contracting An Edge 
Example: Contract one of the edges between 3 and 5 

1 2 3 4 5 6 7 

1 0 1 0 3 0 0 0 

2 1 0 1 0 1 2 0 

3 0 1 0 0 2 2 0 

4 3 0 0 0 1 0 0 

5 0 1 2 1 0 1 1 

6 0 2 2 0 1 0 1 

7 0 0 0 0 1 1 0 

1 1 

2 2 

4 4 

3 3 

5 5 

7 7 

6 6 

{3,5} 
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Contracting An Edge 
Example: Contract one of the edges between 3 and 5 

1 2 3 4 5 6 7 

1 0 1 0 3 0 0 0 

2 1 0 1 0 1 2 0 

3 0 1 0 0 2 2 0 

4 3 0 0 0 1 0 0 

5 0 1 2 1 0 1 1 

6 0 2 2 0 1 0 1 

7 0 0 0 0 1 1 0 

1 1 

2 2 

4 4 

3 3 35 35 

7 7 

6 6 

{3,5} 0 2 1 3 1 
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Contracting An Edge 
Example: Contract one of the edges between 3 and 5 

1 2 35 4 6 7 

1 0 1 0 3 0 0 

2 1 0 2 0 2 0 

35 0 2 0 1 3 1 

4 3 0 1 0 0 0 

6 0 2 3 0 0 1 

7 0 0 1 0 1 0 

1 1 

2 2 

4 4 

3 3 35 35 

7 7 

6 6 

{3,5} 0 2 1 3 1 
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Contracting an Edge 
Claim: Given the adjacency matrix of an 𝑛-node multigraph and 
an edge {𝑢, 𝑣}, one can contract the edge 𝑢, 𝑣  in time 𝑂(𝑛). 
 
• Row/column of combined node {𝑢, 𝑣} is sum of rows/columns 

of 𝑢 and 𝑣 
 

• Row/column of 𝑢 can be replaced by new row/column of 
combined node {𝑢, 𝑣} 
 

• Swap row/column of 𝑣 with last row/column in order to have 
the new  (𝑛 − 1)-node multigraph as a contiguous 
𝑛 − 1 × (𝑛 − 1) submatrix 
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Finding a Random Edge 
• We need to contract a uniformly random edge 
• How to find a uniformly random edge in a multigraph? 

– Finding a random non-zero entry (with the right probability) in an 
adjacency matrix costs 𝑂 𝑛2 . 

 

Idea for more efficient algorithm: 
• First choose a random node 𝑢 

– with probability proportional to the degree (#edges) of 𝑢 

• Pick a random edge of 𝑢 
– only need to look at one row Æ time 𝑂 𝑛  
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Choose a Random Node 
Edge Sampling: 
1. Choose a node 𝑢 ∈ 𝑉 with probability 

 

deg (𝑢)
 deg (𝑣)𝑣∈𝑉

=
deg (𝑢)
2𝑚  

2. Choose a uniformly random edge of 𝑢 
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Choose a Random Node 

• We need to choose a random node 𝑢 with probability deg 𝑢
2𝑚

 
 

• Keep track of the number of edges 𝑚 and maintain an array with 
the degrees of all the nodes 
– Can be done with essentially no extra cost when doing edge contractions 

 

Choose a random node: 
degsum = 0; 
for all nodes 𝑢 ∈ 𝑉: 
    with probability deg 𝑢

2𝑚−degsum
: 

        pick node 𝑢; terminate 
    else 
        degsum += deg 𝑢  
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Randomized Min Cut Algorithm 
Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛) 
times, one of the 𝑂 𝑛2 log 𝑛  instances returns a min. cut w.h.p. 
 

 
Corollary: The contraction algorithm allows to compute a minimum 
cut in 𝑂 𝑛4 log 𝑛  time w.h.p. 
 

• One instance consists of 𝑛 − 2 edge contractions 
 

• Each edge contraction can be carried out in time 𝑂(𝑛) 
– Actually: 𝑂 current #nodes  

 

• Time per instance of the contraction algorithm: 𝑂 𝑛2  
 



Algorithm Theory, WS 2015/16 Fabian Kuhn 24 

Can We Do Better? 
• Time 𝑂(𝑛4 log 𝑛) is not very spectacular, a simple max flow 

based implementation has time 𝑂 𝑛4 . 
 

However, we will see that the contraction algorithm is 
nevertheless very interesting because: 
 
1. The algorithm can be improved to beat every known 

deterministic algorithm. 
 
1. It allows to obtain strong statements about the distribution 

of cuts in graphs. 
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Better Randomized Algorithm 
Recall: 
• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘 
• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing 

(𝐴, 𝐵) gets contracted. 
• Throughout the algorithm, the edge connectivity is at least 𝑘 

and therefore each node has degree ≥ 𝑘 
• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes and thus at 

least 𝑛 + 1 − 𝑖 𝑘 2  edges 
• If no edge crossing (𝐴, 𝐵) is contracted before, the probability 

to contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most 
 

𝑘
𝑛 + 1 − 𝑖 𝑘

2

=
2

𝑛 + 1 − 𝑖 . 
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Improving the Contraction Algorithm 
• For a specific min cut (𝐴, 𝐵), if (𝐴, 𝐵) survives the first 𝑖 

contractions, 
 

ℙ edge crossing 𝐴, 𝐵  in contraction 𝑖 + 1 ≤
2

𝑛 − 𝑖 . 
 

• Observation: The probability only gets large for large 𝑖 
 

• Idea: The early steps are much safer than the late steps. 
 

Maybe we can repeat the late steps more often than the early 
ones. 
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Safe Contraction Phase 
Lemma: A given min cut (𝐴, 𝐵) of an 𝑛-node graph 𝐺 survives the 
first 𝑛 − 𝑛

2 + 1  contractions, with probability > 1
2 .  

 

Proof: 
• Event ℰ𝑖: cut (𝐴, 𝐵) survives contraction 𝑖  
• Probability that (𝐴, 𝐵) survives the first 𝑛 − 𝑡 contractions: 
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Better Randomized Algorithm 
Let’s simplify a bit: 
• Pretend that 𝑛/ 2 is an integer (for all 𝑛 we will need it). 
• Assume that a given min cut survives the first 𝑛 − 𝑛

2  
contractions with probability ≥ 1

2 . 
 

𝐜𝐨𝐧𝐭𝐫𝐚𝐜𝐭(𝑮, 𝒕): 
• Starting with 𝑛-node graph 𝐺, perform 𝑛 − 𝑡 edge contractions 

such that the new graph has 𝑡 nodes. 
 

𝐦𝐢𝐧𝐜𝐮𝐭(𝑮): 

1.  𝑋1 ≔ mincut contract 𝐺, 𝑛 2 ; 

2.  𝑋2 ≔ mincut contract 𝐺, 𝑛 2 ; 

3.  return min 𝑋1, 𝑋2 ; 
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Success Probability 
𝐦𝐢𝐧𝐜𝐮𝐭(𝑮): 

1.  𝑋1 ≔ mincut contract 𝐺, 𝑛 2 ; 

2.  𝑋2 ≔ mincut contract 𝐺, 𝑛 2 ; 

3.  return min 𝑋1, 𝑋2 ; 
 

𝑷(𝒏): probability that the above algorithm returns a min cut when 
             applied to a graph with 𝑛 nodes.  
 

• Probability that 𝑋1 is a min cut ≥ 
 

Recursion: 



Algorithm Theory, WS 2015/16 Fabian Kuhn 30 

Success Probability 
Theorem: The recursive randomized min cut algorithm returns a 
minimum cut with probability at least 1 log2 𝑛 . 
 

Proof (by induction on 𝑛): 

𝑃 𝑛 = 𝑃
𝑛
2

−
1
4 ⋅ 𝑃

𝑛
2

2

,    𝑃 2 = 1 
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Running Time 

1.  𝑋1 ≔ mincut contract 𝐺, 𝑛 2 ; 

2.  𝑋2 ≔ mincut contract 𝐺, 𝑛 2 ; 

3.  return min 𝑋1, 𝑋2 ; 
 

Recursion: 
• 𝑇(𝑛): time to apply algorithm to 𝑛-node graphs 

• Recursive calls: 2𝑇 𝑛 2  

• Number of contractions to get to 𝑛 2  nodes: 𝑂 𝑛  
 

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑂 𝑛2 , 𝑇 2 = 𝑂(1) 
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Running Time 
Theorem: The running time of the recursive, randomized min cut 
algorithm is 𝑂(𝑛2 log 𝑛). 
 

Proof: 
• Can be shown in the usual way, by induction on 𝑛 

 
Remark: 
• The running time is only by an 𝑂(log 𝑛)-factor slower than 

the basic contraction algorithm. 
• The success probability is exponentially better! 
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Number of Minimum Cuts 
• Given a graph 𝐺, how many minimum cuts can there be? 

 
• Or alternatively: If 𝐺 has edge connectivity 𝑘, how many ways 

are there to remove 𝑘 edges to disconnect 𝐺? 
 

• Note that the total number of cuts is large. 
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Number of Minimum Cuts 
Example: Ring with 𝑛 nodes 

• Minimum cut size: 2 
 

• Every two edges 
induce a min cut 
 

• Number of edge pairs: 
 

𝑛
2  

 
• Are there graphs with 

more min cuts? 

• Minimum cut size: 2 
 

• Every two edges 
induce a min cut 
 

• Number of edge pairs: 
 

𝑛
2  

 
• Are there graphs with 

more min cuts? 
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Number of Min Cuts 

Theorem: The number of minimum cuts of a graph is at most 𝑛2 . 

Proof: 
• Assume there are 𝑠 min cuts 

 

• For 𝑖 ∈ 1,… , 𝑠 , define event 𝒞𝑖: 
 

𝒞𝑖 ≔ {basic contraction algorithm returns min cut 𝑖} 
 

• We know that for 𝑖 ∈ {1,… , 𝑠}: ℙ 𝒞𝑖 ≥ 1
𝑛
2  

 

• Events 𝒞1,… , 𝒞𝑠 are disjoint: 
 

ℙ  𝒞𝑖

𝑠

𝑖=1

= ℙ 𝒞𝑖

𝑠

𝑖=1

≥
𝑠
𝑛
2
                                  


