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Approximation Algorithms

• Optimization appears everywhere in computer science

• We have seen many examples, e.g.:
– scheduling jobs

– traveling salesperson

– maximum flow, maximum matching

– minimum spanning tree

– minimum vertex cover

– …

• Many discrete optimization problems are NP-hard

• They are however still important and we need to solve them

• As algorithm designers, we prefer algorithms that produce 
solutions which are provably good, even if we can’t compute 
an optimal solution.
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Approximation Algorithms: Examples

We have already seen two approximation algorithms

• Metric TSP: If distances are positive and satisfy the triangle 
inequality, the greedy tour is only by a log-factor longer than an 
optimal tour

• Maximum Matching and Vertex Cover: A maximal matching 
gives solutions that are within a factor of 2 for both problems.
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Approximation Ratio

An approximation algorithm is an algorithm that computes a 
solution for an optimization with an objective value that is provably 
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐎𝐏𝐓

𝐀𝐋𝐆
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Example: Load Balancing

We are given:

• 𝑚 machines 𝑀1, … ,𝑀𝑚

• 𝑛 jobs, processing time of job 𝑖 is 𝑡𝑖

Goal:

• Assign each job to a machine such that the makespan is 
minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore 
want to get a good approximation for the problem.
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Greedy Algorithm

There is a simple greedy algorithm:

• Go through the jobs in an arbitrary order

• When considering job 𝑖, assign the job to the machine that 
currently has the smallest load.

Example: 3 machines, 12 jobs

3 4 2 613 4 4 2 51

Greedy Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3

4

2 3

1 6

4

4

2

1 5

Optimal Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3 4 2 13

4

4 51

3

3 6 3

2

3 4 2 613 4 4 2 513
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Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with 
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Lower bound can be far from 𝑇∗:
– 𝑚 machines, 𝑚 jobs of size 1, 1 job of size 𝑚

𝑇∗ = 𝑚,
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖 = 2
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Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with 
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Second lower bound on optimal makespan 𝑇∗:

𝑇∗ ≥ max
1≤𝑖≤𝑛

𝑡𝑖
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Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e., 
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For machine 𝑘, let 𝑇𝑘 be the time used by machine 𝑘

• Consider some machine 𝑀𝑖 for which 𝑇𝑖 = 𝑇

• Assume that job 𝑗 is the last one schedule on 𝑀𝑖:

• When job 𝑗 is scheduled, 𝑀𝑖 has the minimum load

𝑇 − 𝑡𝑗 𝑡𝑗𝑴𝒊:
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Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e., 
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For all machines 𝑀𝑘: load 𝑇𝑘 ≥ 𝑇 − 𝑡𝑗
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Can We Do Better?

The analysis of the greedy algorithm is almost tight:

• Example with 𝑛 = 𝑚 𝑚 − 1 + 1 jobs

• Jobs 1,… , 𝑛 − 1 = 𝑚(𝑚 − 1) have 𝑡𝑖 = 1, job 𝑛 has 𝑡𝑛 = 𝑚

Greedy Schedule:

𝑀1:

𝑀2:

𝑀3:

𝑀𝑚:

⋮

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

⋯

⋯

⋯

⋯

⋮

𝑡𝑛 = 𝑚
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Improving Greedy

Bad case for the greedy algorithm:
One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

1. Sort jobs by decreasing length s.t. 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑛
2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If 𝑛 > 𝑚: 𝑇∗ ≥ 𝑡𝑚 + 𝑡𝑚+1 ≥ 2𝑡𝑚+1

Proof:

• Two of the first 𝑚 + 1 jobs need to be scheduled on the same 
machine

• Jobs 𝑚 and 𝑚+ 1 are the shortest of these jobs
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Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio ≤ Τ3 2.

Proof:

• We show that 𝑇 ≤ Τ3 2 ⋅ 𝑇
∗

• As before, we consider the machine 𝑀𝑖 with 𝑇𝑖 = 𝑇

• Job 𝑗 (of length 𝑡𝑗) is the last one scheduled on machine 𝑀𝑖

• If 𝑗 is the only job on 𝑀𝑖, we have 𝑇 = 𝑇∗

• Otherwise, we have 𝑗 ≥ 𝑚 + 1
– The first 𝑚 jobs are assigned to 𝑚 distinct machines
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Metric TSP

Input: 

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites) 

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣) is dist from 𝑢 to 𝑣

• Distances define a metric on 𝑉:
𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 ≥ 0, 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣
∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ∶ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

Solution: 

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of the vertices

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣1, 𝑣𝑛 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal: 

• Minimize length of TSP path or TSP tour 
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Metric TSP

• The problem is NP-hard

• We have seen that the greedy algorithm (always going to the 
nearest unvisited node) gives an 𝑂(log 𝑛)-approximation

• Can we get a constant approximation ratio?

• We will see that we can…



Algorithm Theory, WS 2016/17 Fabian Kuhn 16

TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the 
weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it’s length is the weight of the tree

Corollary: Since an optimal TSP 
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.
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The MST Tour

Walk around the MST…

19
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The MST Tour

Walk around the MST…
Cost (walk) = 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

Cost (tour)  < 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

19
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Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the 
metric TSP problem.

Proof:

• Triangle inequality  length of tour is at most 2 ⋅ weight(MST)

• We have seen that weight MST < opt. tour length

Can we do even better?
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Metric TSP Subproblems

Claim: Given a metric (𝑉, 𝑑) and (𝑉′, 𝑑) for 𝑉′ ⊆ 𝑉, the optimal 
TSP path/tour of (𝑉′, 𝑑) is at most as large as the optimal TSP 
path/tour of (𝑉, 𝑑).

Optimal TSP tour of 
nodes 𝟏, 𝟐,… , 𝟏𝟐

Induced TSP tour for
nodes 𝟏, 𝟐, 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐

𝐛𝐥𝐮𝐞 𝐭𝐨𝐮𝐫 ≤ 𝐠𝐫𝐞𝐞𝐧 𝐭𝐨𝐮𝐫

1

2

3

4

5

6

7

9

8
10

11

12
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TSP and Matching

• Consider a metric TSP instance (𝑉, 𝑑) with an even number of 
nodes |𝑉|

• Recall that a perfect matching is a matching 𝑀 ⊆ 𝑉 × 𝑉 such 
that every node of 𝑉 is incident to an edge of 𝑀.

• Because |𝑉| is even and because in a metric TSP, there is an 
edge between any two nodes 𝑢, 𝑣 ∈ 𝑉, any partition of 𝑉 into 
𝑉 /2 pairs is a perfect matching.

• The weight of a matching 𝑀 is the sum of the distances 
represented by all edges in 𝑀:

𝑤 𝑀 =
𝑢,𝑣 ∈𝑀

𝑑(𝑢, 𝑣)
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TSP and Matching

Lemma: Assume we are given a TSP instance 𝑉, 𝑑 with an even 
number of nodes. The length of an optimal TSP tour of (𝑉, 𝑑) is at 
least twice the weight of a minimum weight perfect matching of 
(𝑉, 𝑑).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect 
matchings
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Minimum Weight Perfect Matching

Claim: If 𝑉 is even, a minimum weight perfect matching of (𝑉, 𝑑)
can be computed in polynomial time

Proof Sketch:

• We have seen that a minimum weight perfect matching in a 
complete bipartite graph can be computed in polynomial time

• With a more complicated algorithm, also a minimum weight 
perfect matching in complete (non-bipartite) graphs can be 
computed in polynomial time

• The algorithm uses similar ideas as the bipartite weighted 
matching algorithm and it uses the Blossom algorithm as a 
subroutine 
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Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once 
(and where still the total edge weight is small compared to an 
optimal TSP tour)

Euler Tours:

• A tour that visits each edge of a graph exactly once is called an 
Euler tour

• An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

• That’s definitely not true for a tree, but can we modify our 
MST suitably?
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Euler Tour

Theorem: A connected (multi-)graph 𝐺 has an Euler tour if and only 
if every node of 𝐺 has even degree.

Proof:

• If 𝐺 has an odd degree node, it clearly cannot have an Euler tour

• If 𝐺 has only even degree nodes, a tour can be found recursively:

1. Start at some node

2. As long as possible, follow
an unvisited edge
– Gives a partial tour, the remaining

graph still has even degree

3. Solve problem on remaining components recursively

4. Merge the obtained tours into one tour that visits all edges 
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TSP Algorithm

1. Compute MST 𝑇

2. 𝑉odd: nodes that have an odd degree in 𝑇 (|𝑉odd| is even)

3. Compute min weight perfect matching 𝑀 of (𝑉odd, 𝑑)

4. (𝑉, 𝑇 ∪ 𝑀) is a (multi-)graph
with even degrees
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TSP Algorithm

5. Compute Euler tour on (𝑉, 𝑇 ∪ 𝑀)

6. Total length of Euler tour ≤
𝟑

𝟐
⋅ 𝐓𝐒𝐏𝐎𝐏𝐓

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice
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TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation 
ratio of at most Τ3 2.

Proof:

• The length of the Euler tour is ≤ Τ3 2 ⋅ TSPOPT
• Because of the triangle inequality, taking shortcuts can only 

make the tour shorter
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Set Cover

Input:

• A set of elements 𝑋 and a collection 𝒮 of subsets 𝑋, i.e., 𝒮 ⊆ 2𝑋

– such that ڂ𝑆∈𝒮 𝑆 = 𝑋

Set Cover:

• A set cover 𝒞 of (𝑋, 𝒮) is a subset of the sets 𝒮 which covers 𝑋:

ራ

𝑆∈𝒞

𝑆 = 𝑋

Example: 𝑿
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Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝑋 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example: 
𝑿
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Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 to 𝒞 s.t. 𝑆 covers as many 
uncovered elements as possible

Example:
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Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per 
newly covered element ratio (set with best efficiency):

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Analysis of Greedy Algorithm:

• Assign a price 𝑝 𝑥 to each element 𝑥 ∈ 𝑋:
The efficiency of the set when covering the element

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆:

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇



Algorithm Theory, WS 2016/17 Fabian Kuhn 33

Weighted Set Cover: Greedy Algorithm

Example:

• Universe 𝑋 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Sets 𝒮 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6

𝑆1 = 1, 2, 3, 4, 5 , 𝑤𝑆1 = 4

𝑆2 = 2, 6, 7 , 𝑤𝑆2 = 1

𝑆3 = 1, 6, 7, 8, 9 , 𝑤𝑆3 = 4

𝑆4 = 2, 4, 7, 9, 10 , 𝑤𝑆4 = 6

𝑆5 = 1, 3, 5, 6, 7, 8, 9, 10 , 𝑤𝑆5 = 9

𝑆6 = 9, 10 , 𝑤𝑆6 = 3
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is



𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘
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Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is



𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum 
(weighted) set cover algorithm is at most 𝑯𝒔 ≤ 𝟏 + 𝐥𝐧 𝒔, where 𝑠
is the cardinality of the largest set (𝑠 = max

𝑆∈𝒮
|𝑆|).


