
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Approximation Algorithms

• Optimization appears everywhere in computer science

• We have seen many examples, e.g.:
– scheduling jobs

– traveling salesperson

– maximum flow, maximum matching

– minimum spanning tree

– minimum vertex cover

– …

• Many discrete optimization problems are NP-hard

• They are however still important and we need to solve them

• As algorithm designers, we prefer algorithms that produce
solutions which are provably good, even if we can’t compute
an optimal solution.

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Approximation Algorithms: Examples

We have already seen two approximation algorithms

• Metric TSP: If distances are positive and satisfy the triangle
inequality, the greedy tour is only by a log-factor longer than an
optimal tour

• Maximum Matching and Vertex Cover: A maximal matching
gives solutions that are within a factor of 2 for both problems.

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Approximation Ratio

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐎𝐏𝐓

𝐀𝐋𝐆

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Example: Load Balancing

We are given:

• 𝑚 machines 𝑀1, … ,𝑀𝑚

• 𝑛 jobs, processing time of job 𝑖 is 𝑡𝑖

Goal:

• Assign each job to a machine such that the makespan is
minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore
want to get a good approximation for the problem.

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Greedy Algorithm

There is a simple greedy algorithm:

• Go through the jobs in an arbitrary order

• When considering job 𝑖, assign the job to the machine that
currently has the smallest load.

Example: 3 machines, 12 jobs

3 4 2 613 4 4 2 51

Greedy Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3

4

2 3

1 6

4

4

2

1 5

Optimal Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3 4 2 13

4

4 51

3

3 6 3

2

3 4 2 613 4 4 2 513

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Lower bound can be far from 𝑇∗:
– 𝑚 machines, 𝑚 jobs of size 1, 1 job of size 𝑚

𝑇∗ = 𝑚,
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖 = 2

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Second lower bound on optimal makespan 𝑇∗:

𝑇∗ ≥ max
1≤𝑖≤𝑛

𝑡𝑖

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e.,
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For machine 𝑘, let 𝑇𝑘 be the time used by machine 𝑘

• Consider some machine 𝑀𝑖 for which 𝑇𝑖 = 𝑇

• Assume that job 𝑗 is the last one schedule on 𝑀𝑖:

• When job 𝑗 is scheduled, 𝑀𝑖 has the minimum load

𝑇 − 𝑡𝑗 𝑡𝑗𝑴𝒊:

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e.,
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For all machines 𝑀𝑘: load 𝑇𝑘 ≥ 𝑇 − 𝑡𝑗

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Can We Do Better?

The analysis of the greedy algorithm is almost tight:

• Example with 𝑛 = 𝑚 𝑚 − 1 + 1 jobs

• Jobs 1,… , 𝑛 − 1 = 𝑚(𝑚 − 1) have 𝑡𝑖 = 1, job 𝑛 has 𝑡𝑛 = 𝑚

Greedy Schedule:

𝑀1:

𝑀2:

𝑀3:

𝑀𝑚:

⋮

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

⋯

⋯

⋯

⋯

⋮

𝑡𝑛 = 𝑚

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Improving Greedy

Bad case for the greedy algorithm:
One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

1. Sort jobs by decreasing length s.t. 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑛
2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If 𝑛 > 𝑚: 𝑇∗ ≥ 𝑡𝑚 + 𝑡𝑚+1 ≥ 2𝑡𝑚+1

Proof:

• Two of the first 𝑚 + 1 jobs need to be scheduled on the same
machine

• Jobs 𝑚 and 𝑚+ 1 are the shortest of these jobs

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio ≤ Τ3 2.

Proof:

• We show that 𝑇 ≤ Τ3 2 ⋅ 𝑇
∗

• As before, we consider the machine 𝑀𝑖 with 𝑇𝑖 = 𝑇

• Job 𝑗 (of length 𝑡𝑗) is the last one scheduled on machine 𝑀𝑖

• If 𝑗 is the only job on 𝑀𝑖, we have 𝑇 = 𝑇∗

• Otherwise, we have 𝑗 ≥ 𝑚 + 1
– The first 𝑚 jobs are assigned to 𝑚 distinct machines

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Metric TSP

Input:

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites)

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣) is dist from 𝑢 to 𝑣

• Distances define a metric on 𝑉:
𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 ≥ 0, 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣
∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ∶ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

Solution:

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of the vertices

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣1, 𝑣𝑛 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal:

• Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Metric TSP

• The problem is NP-hard

• We have seen that the greedy algorithm (always going to the
nearest unvisited node) gives an 𝑂(log 𝑛)-approximation

• Can we get a constant approximation ratio?

• We will see that we can…

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the
weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it’s length is the weight of the tree

Corollary: Since an optimal TSP
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

The MST Tour

Walk around the MST…

19

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

The MST Tour

Walk around the MST…
Cost (walk) = 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

Cost (tour) < 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

19

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the
metric TSP problem.

Proof:

• Triangle inequality length of tour is at most 2 ⋅ weight(MST)

• We have seen that weight MST < opt. tour length

Can we do even better?

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Metric TSP Subproblems

Claim: Given a metric (𝑉, 𝑑) and (𝑉′, 𝑑) for 𝑉′ ⊆ 𝑉, the optimal
TSP path/tour of (𝑉′, 𝑑) is at most as large as the optimal TSP
path/tour of (𝑉, 𝑑).

Optimal TSP tour of
nodes 𝟏, 𝟐,… , 𝟏𝟐

Induced TSP tour for
nodes 𝟏, 𝟐, 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐

𝐛𝐥𝐮𝐞 𝐭𝐨𝐮𝐫 ≤ 𝐠𝐫𝐞𝐞𝐧 𝐭𝐨𝐮𝐫

1

2

3

4

5

6

7

9

8
10

11

12

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

TSP and Matching

• Consider a metric TSP instance (𝑉, 𝑑) with an even number of
nodes |𝑉|

• Recall that a perfect matching is a matching 𝑀 ⊆ 𝑉 × 𝑉 such
that every node of 𝑉 is incident to an edge of 𝑀.

• Because |𝑉| is even and because in a metric TSP, there is an
edge between any two nodes 𝑢, 𝑣 ∈ 𝑉, any partition of 𝑉 into
𝑉 /2 pairs is a perfect matching.

• The weight of a matching 𝑀 is the sum of the distances
represented by all edges in 𝑀:

𝑤 𝑀 =
𝑢,𝑣 ∈𝑀

𝑑(𝑢, 𝑣)

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

TSP and Matching

Lemma: Assume we are given a TSP instance 𝑉, 𝑑 with an even
number of nodes. The length of an optimal TSP tour of (𝑉, 𝑑) is at
least twice the weight of a minimum weight perfect matching of
(𝑉, 𝑑).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect
matchings

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Minimum Weight Perfect Matching

Claim: If 𝑉 is even, a minimum weight perfect matching of (𝑉, 𝑑)
can be computed in polynomial time

Proof Sketch:

• We have seen that a minimum weight perfect matching in a
complete bipartite graph can be computed in polynomial time

• With a more complicated algorithm, also a minimum weight
perfect matching in complete (non-bipartite) graphs can be
computed in polynomial time

• The algorithm uses similar ideas as the bipartite weighted
matching algorithm and it uses the Blossom algorithm as a
subroutine

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once
(and where still the total edge weight is small compared to an
optimal TSP tour)

Euler Tours:

• A tour that visits each edge of a graph exactly once is called an
Euler tour

• An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

• That’s definitely not true for a tree, but can we modify our
MST suitably?

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Euler Tour

Theorem: A connected (multi-)graph 𝐺 has an Euler tour if and only
if every node of 𝐺 has even degree.

Proof:

• If 𝐺 has an odd degree node, it clearly cannot have an Euler tour

• If 𝐺 has only even degree nodes, a tour can be found recursively:

1. Start at some node

2. As long as possible, follow
an unvisited edge
– Gives a partial tour, the remaining

graph still has even degree

3. Solve problem on remaining components recursively

4. Merge the obtained tours into one tour that visits all edges

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

TSP Algorithm

1. Compute MST 𝑇

2. 𝑉odd: nodes that have an odd degree in 𝑇 (|𝑉odd| is even)

3. Compute min weight perfect matching 𝑀 of (𝑉odd, 𝑑)

4. (𝑉, 𝑇 ∪ 𝑀) is a (multi-)graph
with even degrees

Algorithm Theory, WS 2016/17 Fabian Kuhn 27

TSP Algorithm

5. Compute Euler tour on (𝑉, 𝑇 ∪ 𝑀)

6. Total length of Euler tour ≤
𝟑

𝟐
⋅ 𝐓𝐒𝐏𝐎𝐏𝐓

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice

Algorithm Theory, WS 2016/17 Fabian Kuhn 28

TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation
ratio of at most Τ3 2.

Proof:

• The length of the Euler tour is ≤ Τ3 2 ⋅ TSPOPT
• Because of the triangle inequality, taking shortcuts can only

make the tour shorter

Algorithm Theory, WS 2016/17 Fabian Kuhn 29

Set Cover

Input:

• A set of elements 𝑋 and a collection 𝒮 of subsets 𝑋, i.e., 𝒮 ⊆ 2𝑋

– such that ڂ𝑆∈𝒮 𝑆 = 𝑋

Set Cover:

• A set cover 𝒞 of (𝑋, 𝒮) is a subset of the sets 𝒮 which covers 𝑋:

ራ

𝑆∈𝒞

𝑆 = 𝑋

Example: 𝑿

Algorithm Theory, WS 2016/17 Fabian Kuhn 30

Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝑋 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example:
𝑿

Algorithm Theory, WS 2016/17 Fabian Kuhn 31

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 to 𝒞 s.t. 𝑆 covers as many
uncovered elements as possible

Example:

Algorithm Theory, WS 2016/17 Fabian Kuhn 32

Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per
newly covered element ratio (set with best efficiency):

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Analysis of Greedy Algorithm:

• Assign a price 𝑝 𝑥 to each element 𝑥 ∈ 𝑋:
The efficiency of the set when covering the element

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆:

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Algorithm Theory, WS 2016/17 Fabian Kuhn 33

Weighted Set Cover: Greedy Algorithm

Example:

• Universe 𝑋 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Sets 𝒮 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6

𝑆1 = 1, 2, 3, 4, 5 , 𝑤𝑆1 = 4

𝑆2 = 2, 6, 7 , 𝑤𝑆2 = 1

𝑆3 = 1, 6, 7, 8, 9 , 𝑤𝑆3 = 4

𝑆4 = 2, 4, 7, 9, 10 , 𝑤𝑆4 = 6

𝑆5 = 1, 3, 5, 6, 7, 8, 9, 10 , 𝑤𝑆5 = 9

𝑆6 = 9, 10 , 𝑤𝑆6 = 3

Algorithm Theory, WS 2016/17 Fabian Kuhn 34

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Algorithm Theory, WS 2016/17 Fabian Kuhn 35

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Algorithm Theory, WS 2016/17 Fabian Kuhn 36

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithm is at most 𝑯𝒔 ≤ 𝟏 + 𝐥𝐧 𝒔, where 𝑠
is the cardinality of the largest set (𝑠 = max

𝑆∈𝒮
|𝑆|).

