UNI

"
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

FREIBURG

UNI

Approximation Ratio

FREIBURG

An approximation algorithm is an algorithm that computes a
solution for an optimization with an objective value that is provably
within a bounded factor of the optimal objective value.

Formally:

* OPT = 0 : optimal objective value
ALG = 0O : objective value achieved by the algorithm

* Approximation Ratio a:

.. ALG
Minimization: a = max -
input instances OPT

o _ OPT
Maximization: a := max -

input instances ALG

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Minimum (Weighted) Set Cover

UNI

FREIBURG

Minimum Set Cover:

* @Goal: Find a set cover C of smallest possible size
— i.e., over X with as few sets as possible

Minimum Weighted Set Cover:
* EachsetS € S has aweight wg > 0
* Goal: Find a set cover C of minimum weight

Example:

Algorithm Theory, WS 2016/17 Fabian Kuhn

Weighted Set Cover: Greedy Algorithm .

UNI
FREIBURG

Greedy Weighted Set Cover Algorithm:
e StartwithC =0

* Ineachstep,addsetS € § \ C with the best weight per
newly covered element ratio (set with best efficiency):

. Ws
S = arg min
SENC |\ Uree T

Analysis of Greedy Algorithm:

* Assign a price p(x) to each element x € X:
The efficiency of the set when covering the element

* If covering x with set S, if partial cover is C before adding S:
Wg

S\ UpeeT|

p(e) =

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Weighted Set Cover: Greedy Algorithm .

UNI
FREIBURG

Corollary: The total price of aset S € § of size |S| = k is
K

1
zp(x)SWS-Hk, where Hk=2—,S1+lnk
XES =1 l

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithmisat most H; < 1 4+ In s, where s

is the cardinality of the largest set (s = max 1S|).
S

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Set Cover Greedy Algorithm

UNI
f

FREIBURG

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the
approximation ratio of the greedy algorithm is = (1 — 0(1)) -In s.

e if sisthe size of the largest set... (s can be linear in n)
Let’s show that the approximation ratio is at least (logn)...
ofeffe offe o o offe o o ¢ ¢ o o olfe o o 00000000 e e e o o
OPT =2
GREEDY > log; n

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

UNI

Set Cover: Better Algorithm?

An approximation ratio of In n seems not spectacular...
Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Feige showed that unless NP has deterministic n®{108108 ™) _tjme
algorithms, minimum set cover cannot be approximated better

than by a factor (1 — 0(1)) - Inn in polynomial time.

* Proofis based on the so-called PCP theorem

— PCP theorem is one of the main (relatively) recent advancements in
theoretical computer science and the major tool to prove approximation
hardness lower bounds

— Shows that every language in NP has certificates of polynomial length
that can be checked by a randomized algorithm by only querying a
constant number of bits (for any constant error probability)

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

FREIBURG

Set Cover: Special Cases

UNI
f

FREIBURG

Vertex Cover: set S € V of nodes of a graph ¢ = (V, E) such that
v{u,v} € E, fu,v}Ins # 0.

<=

Minimum Vertex Cover:

* Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:
 Each node has a weight
* Find a vertex cover of minimum total weight

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Set Cover: Special Cases

UNI
FREIBURG

Dominating Set:

Given a graph G = (V,E), a dominating set S € V is a subset of
the nodes I/ of G such that for all nodesu € V' \ S, thereis a
neighbor v € S.

PN AN

—O

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Minimum Hitting Set

UNI
f

FREIBURG

Given: Set of elements X and collection of subsets § € 2%
— Setscover X: Uges S = X

Goal: Find a min. cardinality subset H € X of elements such that
VSES:SNH+*0Q

Problem is equivalent to min. set cover with roles of sets and
elements interchanged

Sets

Elements

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Knapsack

UNI
FREIBURG

* nitems1,...,n, eachitem has weight w; > 0 and value v; > 0
* Knapsack (bag) of capacity W

* Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:

maxz v;
i€ES
s.t. S€{1,...,n}and Zwi <Ww
iES

* E.g.:jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Knapsack: Dynamic Programming Alg.

UNI
f

FREIBURG

We have shown:

* If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW)

* |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time 0(n?V), where V is the max. value.

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

UNI

Knapsack: Dynamic Programming Alg.

FREIBURG

We have shown:

* If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW)

* |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time O (n?V), where V is the max. value.

Problems:
 If W and V are large, the algorithms are not polynomial inn

* If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

 Can we adapt one of the algorithms to at least compute an
approximate solution?

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Approximation Algorithm

UNI
FREIBURG

* The algorithm has a parameter e > 0
 We assume that each item alone fits into the knapsack
 We define:

.~ Vi 5
V = maxv;, Vi:v; = [— , V := max 7;
1<isn eV 1<i<n

* We solve the problem with integer values ¥; and weights w;
using dynamic programming in time O (n? - 17)
* |f solution value < V, we take item with value V instead

Theorem: The described algorithm runs in time 0(n3/¢).

Proof:

V=maxvi=max [} H

1<i<n 1sisn

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Approximation Algorithm

UNI
f

FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + «.

Proof:
* Define the set of all feasible solutions (subsets of [n])

S = {S c{1,..,n}: ZWi < W}

LES

* v(S5): value of solution S w.r.t. values v, v,, ...
D(S5): value of solution S w.r.t. values 74, D, ...

 S":an optimal solution w.r.t. values vy, v,, ...
S :an optimal solution w.r.t. values ¥, U,, ...

* Weights are not changed at all, hence, S is a feasible solution

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Approximation Algorithm

UNI
FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + «.

Proof:
v(s)=) vi=max) v

e We have

i€S* i€S
(S ==:E:i3-==lruu(:E:i?
(5) , ' Ses '
i€S$ SES

* Because every item fits into the knapsack, we have
Vie(l.,nkv SV)y
jES*

~ vin eV o ~ vin
. AIso:vi=L‘—V = v; S — -1, andvisgl—v+1

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Approximation Algorithm

UNI
f

FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at most 1 + «.

Proof:
e We have

) eV &V 54
v(S)=Zvi_7-ZUi_7 Ul_721+
=y

i€S* ieS* =
e Therefore

v(S*) = ZUL =

IES* ieS

. va(f) >V v(§*) < (1 +¢) U(S’)

v; < eV + v(g)

e Otherwise: algorithm solution value is V and
v(§)<(Q+4+¢)-V

Algorithm Theory, WS 2016/17 Fabian Kuhn

17

Approximation Schemes

UNI
FREIBURG

For every parameter € > 0, the knapsack algorithm computes a
(1 + &)-approximation in time 0(n>/¢).

For every fixed &, we therefore get a polynomial time
approximation algorithm

An algorithm that computes an (1 + &)-approximation for every
& > 0is called an approximation scheme.

If the running time is polynomial for every fixed &, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

If the running time is also polynomial in 1/¢, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

Thus, the described alg. is an FPTAS for the knapsack problem

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

