Theoretical Computer Science - Bridging Course
Winter Term 2016
Exercise Sheet 9

Hand in (electronically or hard copy) before your weekly meeting but not later than 23:59, Wednesday, January 11, 2016

Exercise 1: The class \mathcal{NP} (2+3+2+0 points)

\mathcal{NP} is the set of languages which can be decided by a non-deterministic Turing machine whose run-time (minimum number of steps required to reach the accepting state) can be bounded by $p(n)$, where p is a polynomial and n the size of the respective input (problem instance).

A non-deterministic Turing machine N is typically used for a non-deterministic procedure called ‘guess and check’. First N ‘guesses’ a solution for given problem instance s, which leads to the correct answer of the decision problem ($s \in L$ or $s \notin L$)\(^1\). Then the solution guessed by N is verified by a deterministic Turing machine D which accepts if and only if the solution is correct (D sifts out wrong guesses).

Show that the following problems are in \mathcal{NP} by describing the solution that the non-deterministic machine is expected to guess, and giving a deterministic algorithm that verifies it in polynomial time. Use the O notation to bound the run time. Since it is easy (i.e. possible in polynomial time) to decide whether inputs are well-formed instances, your algorithm only needs to consider well-formed inputs.

(a) CLIQUE = \{\langle G, k \rangle | G is a Graph with a complete subgraph with k nodes\}

(b) ISO = \{\langle G, H \rangle | G and H are isomorphic graphs\}

Remark: Two graphs G, H are isomorphic, if a bijective mapping $f : V(G) \to V(H)$ exists such that $u, v \in V(G)$ are adjacent in G, if and only if $f(u), f(v) \in V(H)$ are adjacent in H.

(c) 3-SAT = \{\langle \phi \rangle | \text{bool. formula } \phi \text{ in 3-CNF has assignment of variables s.t. } \phi \text{ evaluates to TRUE.}\}

Remark: ϕ is in 3-CNF if it is of the form $C_1 \land \ldots \land C_m$, where $C_i = L_{i,1} \lor L_{i,2} \lor L_{i,3}$ are clauses of at most three literals $L_{i,j} = x_k$ or \overline{x}_k of negated or non-negated variables x_1, \ldots, x_n of ϕ.

(d) Show that 2-SAT $\in \mathcal{P}$ (voluntary).

Hint: Clauses with two literals can be transformed into the form $A \rightarrow B$.

Exercise 2: The class \mathcal{NPC} (3+4 points)

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2. Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f : \Sigma_1 \rightarrow \Sigma_2$ exists, that can be calculated in polynomial time and

\[
\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.
\]

Language L is called \mathcal{NP}-hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

\[
L \ \mathcal{NP}\text{-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.
\]

\(^1\)A Turing machine that ‘guesses’ solutions can be constructed as as follows: N writes a random input sequence and halts. Since a non-deterministic Turing machine ‘explores all possibilities’ it will give the correct solution in polynomial time, if it exists.
The reduction relation \(\leq_p \) is transitive (\(L_1 \leq_p L_2 \) and \(L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3 \)). Therefore, in order to show that \(L \) is \(\mathcal{NP} \)-hard, it suffices to reduce a known \(\mathcal{NP} \)-hard problem \(\bar{L} \) to \(L \), i.e. \(\bar{L} \leq_p L \).

Finally a language is called \(\mathcal{NP} \)-complete (\(\Leftrightarrow L \in \mathcal{NP} \)), if

1. \(L \in \mathcal{NP} \) and
2. \(L \) is \(\mathcal{NP} \)-hard.

(a) Show \(\text{HALFCLIQUE} := \{\langle G \rangle \mid \text{Graph } G \text{ with } n \text{ nodes has Clique of size at least } \lceil n/2 \rceil \} \in \mathcal{NP} \).

\[\text{Hint: Describe an algorithm (with poly. run-time!) that transforms } G \text{ and } k \text{ into a graph } G' \text{ by adding nodes and connecting them with edges in a suitable manner, s.t. a Clique of size } k \text{ in } G \text{ becomes a Clique of size } \lceil n/2 \rceil \text{ in } G' \text{ and vice versa(!). Be mindful of the cases } k \text{ odd or even.} \]

(b) Show \(\text{DOMINATINGSET} := \{\langle G, k \rangle \mid \text{Graph } G \text{ has a dominating set of size at most } k \} \in \mathcal{NP} \).

\[\text{Use that } \text{VERTEXCOVER} := \{\langle G, k \rangle \mid \text{Graph } G \text{ has a vertex cover of size at most } k \} \in \mathcal{NP} \].

\[\text{Remark: A dominating set is a subset of nodes of } G \text{ such that every node not in the subset is adjacent to some node in the subset. A vertex cover is a subset of nodes of } G \text{ such that every edge of } G \text{ is adjacent to a node in the subset.} \]

\[\text{Hint: Transform a Graph } G \text{ into a Graph } G' \text{ such that a vertex cover of } G \text{ will result in a dominating set } G' \text{ and vice versa(!). Note that a dominating set is not necessarily a vertex cover (} G = (\{v_1, v_2, v_3, v_4\}, \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}\}) \text{ has the dominating set } \{v_1, v_4\} \text{ which is not a vertex cover). Also a vertex cover is not necessarily a dominating set (consider isolated notes).} \]

Exercise 3: Complexity Classes: Big Picture (1+2+3+0+0+0 points)

(a) Why is \(\mathcal{P} \subseteq \mathcal{NP} \)?

(b) Show that \(\mathcal{P} \cap \mathcal{NP} \bar{C} = \emptyset \) if \(\mathcal{P} \neq \mathcal{NP} \).

\[\text{Hint: Assume that there exists a } L \in \mathcal{P} \cap \mathcal{NP} \bar{C} \text{ and derive a contradiction to } \mathcal{P} \neq \mathcal{NP} \].

(c) Give a Venn Diagram showing the sets \(\mathcal{P}, \mathcal{NP}, \mathcal{NPC} \) for both cases \(\mathcal{P} \neq \mathcal{NP} \) and \(\mathcal{P} = \mathcal{NP} \).

\[\text{Remark: Use the results of (a) and (b) even if you did not succeed in proving those.} \]

(d) Show that the Halting Problem \(H \) is \(\mathcal{NP} \)-hard. You can use that

\[\text{SAT} = \{\langle \phi \rangle \mid \text{bool. formula } \phi \text{ has assignment of variables s.t. } \phi \text{ evaluates to TRUE.}\} \]

is \(\mathcal{NP} \)-hard. (voluntary)

\[\text{Hint: For any boolean formula } \phi \text{ give an algorithm } A \text{ that stops if and only if } \phi \text{ is satisfiable.} \]

(e) Argue why \(H \notin \mathcal{NP} \). (voluntary) \[\text{Hint: You can use results from previous exercise sheets.} \]

(f) Add the class of \(\mathcal{NP} \)-hard problems to the Venn Diagrams from exercise (c). (voluntary)

We wish you happy holidays and a good start into the new year 2017.