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Example

𝑝 𝑥 = 3𝑥3 − 15𝑥2 + 18𝑥 + 0, 𝑎 = [0,18,−15,3]
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Faster Polynomial Multiplication?

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 and 𝜔2𝑛
𝑘 , 𝑞 𝜔2𝑛

𝑘

2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 𝑞 𝜔2𝑛
𝑘

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at  𝜔2𝑛
0 , 𝜔2𝑛

1 , … , 𝜔2𝑛
2𝑛−1 using FFT

Point-wise multiplication

Interpolation
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Interpolation

Convert point-value representation into coefficient representation

Input: 𝑥0, 𝑦0 , … , 𝑥𝑛−1, 𝑦𝑛−1 with 𝑥𝑖 ≠ 𝑥𝑗 for 𝑖 ≠ 𝑗

Output: 

Degree-(𝑛 − 1) polynomial with coefficients 𝑎0, … , 𝑎𝑛−1 such that

𝑝 𝑥0 = 𝑎0 + 𝑎1𝑥0 + 𝑎2𝑥0
2 +⋯+ 𝑎𝑛−1𝑥0

𝑛−1 = 𝑦0
𝑝 𝑥1 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1

2 +⋯+ 𝑎𝑛−1𝑥1
𝑛−1 = 𝑦1

⋮ ⋮
𝑝 𝑥𝑛−1 = 𝑎0 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−1

2 +⋯+ 𝑎𝑛−1𝑥𝑛−1
𝑛−1 = 𝑦𝑛−1

 linear system of equations for 𝑎0, … , 𝑎𝑛−1
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Interpolation

Matrix Notation:

1 𝑥0 ⋯ 𝑥0
𝑛−1

1 𝑥1 ⋯ 𝑥1
𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛−1 ⋯ 𝑥𝑛−1

𝑛−1

⋅

𝑎0
𝑎1
⋮

𝑎𝑛−1

=

𝑦0
𝑦1
⋮

𝑦𝑛−1

• System of equations solvable iff 𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗

Special Case 𝒙𝒊 = 𝝎𝒏
𝒊 :

1 1 1 ⋯ 1
1 𝜔𝑛 𝜔𝑛

2 ⋯ 𝜔𝑛
𝑛−1

1 𝜔𝑛
2 𝜔𝑛

4 ⋯ 𝜔𝑛
2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮

1 𝜔𝑛
𝑛−1 𝜔𝑛

2 𝑛−1
⋯ 𝜔𝑛

(𝑛−1)(𝑛−1)

⋅

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−1

=

𝑦0
𝑦1
𝑦2
⋮

𝑦𝑛−1
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Interpolation

• Linear system:
𝑊 ⋅ 𝒂 = 𝒚 ⟹ 𝒂 = 𝑊−1 ⋅ 𝒚

𝑊𝑖,𝑗 = 𝜔𝑛
𝑖𝑗
, 𝒂 =

𝑎0
⋮

𝑎𝑛−1
, 𝒚 =

𝑦0
⋮

𝑦𝑛−1

Claim:

𝑾𝒊𝒋
−𝟏 =

𝝎𝒏
−𝒊𝒋

𝒏

Proof: Need to show that 𝑊−1𝑊 = 𝐼𝑛



Algorithm Theory, WS 2016/17 Fabian Kuhn 6

DFT Matrix Inverse

𝑊−1𝑊 =

⋯

1

𝑛

𝜔𝑛
−𝑖

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑖

𝑛
⋮
⋯

⋅

⋯ 1 ⋯

⋯ 𝜔𝑛
𝑗

⋯

⋯ 𝜔𝑛
2𝑗

⋯
⋮

⋯ 𝜔𝑛
𝑛−1 𝑗

⋯
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DFT Matrix Inverse

𝑊−1𝑊 𝑖,𝑗 = 

ℓ=0

𝑛−1
𝜔𝑛
ℓ(𝑗−𝑖)

𝑛

Need to show 𝑊−1𝑊 𝑖,𝑗 = ቊ
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Case 𝒊 = 𝒋:
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DFT Matrix Inverse

𝑊−1𝑊 𝑖,𝑗 = 

ℓ=0

𝑛−1
𝜔𝑛
ℓ(𝑗−𝑖)

𝑛

Case 𝒊 ≠ 𝒋:
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Inverse DFT

• 𝑊−1 =

⋯
1

𝑛

𝜔𝑛
−𝑘

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑘

𝑛

⋮
⋯

• We get 𝒂 = 𝑊−1 ⋅ 𝒚 and therefore

𝑎𝑘 =
1

𝑛

𝜔𝑛
−𝑘

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑘

𝑛
⋅

𝑦0
𝑦1
⋮

𝑦𝑛−1

=
1

𝑛
⋅ 

𝑗=0

𝑛−1

𝜔𝑛
−𝑘𝑗

⋅ 𝑦𝑗
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DFT and Inverse DFT

Inverse DFT:

𝑎𝑘 =
1

𝑛
⋅ 

𝑗=0

𝑛−1

𝜔𝑛
−𝑘𝑗

⋅ 𝑦𝑗

• Define polynomial 𝑞 𝑥 = 𝑦0 + 𝑦1𝑥 +⋯+ 𝑦𝑛−1𝑥
𝑛−1:

𝑎𝑘 =
1

𝑛
⋅ 𝑞(𝜔𝑛

−𝑘)

DFT:

• Polynomial 𝑝 𝑥 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛−1𝑥
𝑛−1:

𝑦𝑘 = 𝑝(𝜔𝑛
𝑘)
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DFT and Inverse DFT

𝑞 𝑥 = 𝑦0 + 𝑦1𝑥 +⋯+ 𝑦𝑛−1𝑥
𝑛−1, 𝑎𝑘 =

1

𝑛
⋅ 𝑞 𝜔𝑛

−𝑘 :

• Therefore:
𝑎0, 𝑎1, … , 𝑎𝑛−1

=
1

𝑛
⋅ 𝑞 𝜔𝑛

−0 , 𝑞 𝜔𝑛
−1 , 𝑞 𝜔𝑛

−2 , … , 𝑞 𝜔𝑛
− 𝑛−1

=
1

𝑛
⋅ 𝑞 𝜔𝑛

0 , 𝑞 𝜔𝑛
𝑛−1 , 𝑞 𝜔𝑛

𝑛−2 , … , 𝑞 𝜔𝑛
1

• Recall:

DFT𝑛 𝒚 = 𝑞 𝜔𝑛
0 , 𝑞 𝜔𝑛

1 , 𝑞 𝜔𝑛
2 , … , 𝑞 𝜔𝑛

𝑛−1

= 𝑛 ⋅ (𝑎0, 𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎2, 𝑎1)
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DFT and Inverse DFT

• We have DFT𝑛(𝒚) = 𝑛 ⋅ (𝑎0, 𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎2, 𝑎1):

𝑎𝑖 =

1

𝑛
⋅ DFT𝑛(𝒚) 0 if 𝑖 = 0

1

𝑛
⋅ DFT𝑛(𝒚) 𝑛−𝑖 if 𝑖 ≠ 0

• DFT and inverse DFT can both be computed using FFT algorithm 
in 𝑂 𝑛 log 𝑛 time.

• 2 polynomials of degr. < 𝑛 can be multiplied in time 𝑂(𝑛 log 𝑛).
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Faster Polynomial Multiplication?

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 and 𝜔2𝑛
𝑘 , 𝑞 𝜔2𝑛

𝑘

2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 𝑞 𝜔2𝑛
𝑘

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at  𝜔2𝑛
0 , 𝜔2𝑛

1 , … , 𝜔2𝑛
2𝑛−1 using FFT

Point-wise multiplication

Interpolation using FFT
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Convolution

• More generally, the polynomial multiplication algorithm 
computes the convolution of two vectors:

𝒂 = 𝑎0, 𝑎1, … , 𝑎𝑚−1

𝒃 = 𝑏0, 𝑏1, … , 𝑏𝑛−1

𝒂 ∗ 𝒃 = 𝑐0, 𝑐1, … , 𝑐𝑚+𝑛−2 ,

where 𝑐𝑘= 
(𝑖,𝑗):𝑖+𝑗=𝑘
𝑖<𝑚,𝑗<𝑛

𝑎𝑖𝑏𝑗

• 𝑐𝑘 is exactly the coefficient of 𝑥𝑘 in the product polynomial of 
the polynomials defined by the coefficient vectors 𝒂 and 𝒃
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More Applications of Convolutions

Signal Processing Example:

• Assume 𝒂 = 𝑎0, … , 𝑎𝑛−1 represents a sequence of 
measurements over time

• Measurements might be noisy and have to be smoothed out

• Replace 𝑎𝑖 by weighted average of nearby last 𝑚 and next 𝑚
measurements (e.g., Gaussian smoothing):

𝑎𝑖
′ =

1

𝑍
⋅ 

𝑗=𝑖−𝑚

𝑖+𝑚

𝑎𝑗𝑒
− 𝑖−𝑗 2

• New vector 𝒂′ is the convolution of 𝒂 and the weight vector
1

𝑍
⋅ 𝑒−𝑚

2
, 𝑒− 𝑚−1 2

, … , 𝑒−1, 1, 𝑒−1, … , 𝑒− 𝑚−1 2
, 𝑒−𝑚

2

• Might need to take care of boundary points…
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More Applications of Convolutions

Combining Histograms:

• Vectors 𝒂 and 𝒃 represent two histograms

• E.g., annual income of all men & annual income of all women

• Goal: Get new histogram 𝒄 representing combined income of all 
possible pairs of men and women:

𝒄 = 𝒂 ∗ 𝒃

Also, the DFT (and thus the FFT alg.) has many other applications!
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DFT in Signal Processing

Assume that 𝑦 0 , 𝑦 1 , 𝑦 2 ,… , 𝑦(𝑇 − 1) are measurements of a 
time-dependent signal.

Inverse DFT𝑁 of 𝑦 0 ,… , 𝑦 𝑇 − 1 is a vector 𝑐0, … , 𝑐𝑁−1 s.t.

𝑦 𝑡 = 

𝑘=0

𝑁−1

𝑐𝑘 ⋅ 𝑒
2𝜋𝑖⋅𝑘
𝑁 ⋅𝑡

= 

𝑘=0

𝑇−1

𝑐𝑘 ⋅ cos
2𝜋 ⋅ 𝑘

𝑁
⋅ 𝑡 + 𝑖 sin

2𝜋 ⋅ 𝑘

𝑁
⋅ 𝑡

• Converts signal from time domain to frequency domain

• Signal can then be edited in the frequency domain
– e.g., setting some 𝑐𝑘 = 0 filters out some frequencies


