Chapter 2
Greedy Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI

FREIBURG

UNI

Greedy Algorithms

FREIBURG

* No clear definition, but essentially:

In each step make the choice that
looks best at the moment!

 Depending on problem, greedy algorithms can give
— Optimal solutions
— Close to optimal solutions
— No (reasonable) solutions at all

* If it works, very interesting approach!

— And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

UNI

Interval Scheduling

FREIBURG

* Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],13,5],[4,71,[5,8],[5,121,[7,9],[9,12],[8,10],[11,14],[12,14]

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

* @Goal: Select largest possible non-overlapping set of intervals

— For simplicity: overlap at boundary ok
(i.e., [4,7] and [7,9] are non-overlapping)

 Example: Intervals are room requests; satisfy as many as possible

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Greedy Algorithms

UNI

FREIBURG

* Several possibilities...
Choose first available interval:

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Choose shortest available interval:

[1,7] [8,14]
[6,9]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Algorithm Theory, WS 2017/18 Fabian Kuhn

Greedy Algorithms

UNI

FREIBURG

Choose available request with earliest finishing time:

[0,10] [11,14]
[1,3] [4,7] 7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R :=set of all requests; S := empty set;
while R is not empty do

choose r € R with smallest finishing time

addrto S

delete all requests from R that are not compatible with r
end // S is the solution

Algorithm Theory, WS 2017/18 Fabian Kuhn

Earliest Finishing Time is Optimal

UNI

FREIBURG

* Let O be the set of intervals of an optimal solution

e Can we showthat$ = 07?

— No...
[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Greey Solution

Alternative Optimal Sol.

* Show that |S| = |0|.

Algorithm Theory, WS 2017/18 Fabian Kuhn

Greedy Stays Ahead

 Greedy solution S:
[al, bl] [az, bz [alsl, blsl] where bi < Aij+1

 Some optimal solution O:
la3, b1l las, by], . [a|0|,b|0|] where b; < a; 4

 Definde b; := oo fori > |S| and b; :== co fori > |0|

Claim: Foralli > 1, b; < b;

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

UNI
|

FREIBURG

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Algorithm Theory, WS 2017/18 Fabian Kuhn

Greedy Stays Ahead

UNI

FREIBURG

Claim: Foralli > 1, b; < b/

Proof (by induction on i):

Corollary: Earliest finishing time algorithm is optimal.

Algorithm Theory, WS 2017/18 Fabian Kuhn

Weighted Interval Scheduling

UNI
|

FREIBURG

Weighted version of the problem:
* Each interval has a weight
* Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:
e Algorithm needs to look at weights

* Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:
 We will see an algorithm using another design technique later.

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Interval Partitioning

* Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals

— Assign intervals to different resources, where each resource needs to
get a non-overlapping set

 Example:
— Intervals are requests to use some room during this time
— Assign all requests to some room such that there are no conflicts

— Use as few rooms as possible

* Assignment to 3 resources:
[1,3] [4,7] [9,12]
[1,4] [5,8] [9,11] [12,14]
[2,4] [5,12]

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
|

FREIBURG

Depth

UNI
FREIBURG

Depth of a set of intervals:
 Maximum number passing over a single point in time

* Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
3,5] [5,12]
0 1 2 3 5 6 7 8 9 10 11 12 13 14

Lemma: Number of resources needed = depth

Algorithm Theory, WS 2017/18

Fabian Kuhn

11

Greedy Algorithm

UNI
FREIBURG

Can we achieve a partition into “depth” non-overlapping sets?

* Would mean that the only obstacles to partitioning are local...

Algorithm:
* Assign labels 1, ... to the intervals; same label = non-overlapping

1. sortintervals by starting time: I, I, ..., I,
2. fori=1tondo

assign smallest possible label to I;
(possible label: different from conflicting intervals I;, j < i)

4. end

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Interval Partitioning Algorithm

UNI
FREIBURG

Example:
* Labels:
[0,10] [11,14]
(1,3] | [4,7] 7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* Number of labels = depth =4

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Interval Partitioning: Analysis

UNI
FREIBURG

Theorem:

a) Let d be the depth of the given set of intervals. The
algorithm assigns a label from 1, ..., d to each interval.

b) Sets with the same label are non-overlapping

Proof:

* b) holds by construction
* Fora):

— Allintervals [;, j < i overlapping with [;, overlap at the beginning of I;

— At most d — 1 such intervals = some label in {1, ..., d} is available.

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Traveling Salesperson Problem (TSP)

UNI
|

FREIBURG

Input:

* Set I/ of n nodes (points, cities, locations, sites)

* Distance functiond:V XV - R, i.e., d(u,v): dist. from u to v
» Distances usually symmetric, asymm. distances = asymm. TSP

Solution:
e Ordering/permutation vy, v,, ..., v, of nodes

* Length of TSP path: Y1 d(v;, Vj41)
* Length of TSP tour: d(v,,, V1) + Yy d(v, Vi41)

Goal:
 Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

UNI

Example

FREIBURG

: . 32 Optimal Tour:
3 ‘ Length: 86
3 | 33
Greedy Algorithm?
6 2
2
1 3 » Length: 121
g 8
20
18 51

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

Nearest Neighbor (Greedy)

UNI

FREIBURG

* Nearest neighbor can be arbitrarily bad, even for TSP paths

1

(A

()

Algorithm Theory, WS 2017/18

1000

Fabian Kuhn

17

TSP Variants

UNI

FREIBURG

* Asymmetric TSP

— arbitrary non-negative distance/cost function
— most general, nearest neighbor arbitrarily bad
— NP-hard to get within any bound of optimum

* Symmetric TSP

— arbitrary non-negative distance/cost function
— nearest neighbor arbitrarily bad
— NP-hard to get within any bound of optimum

* Metric TSP

— distance function defines metric space: symmetric, non-negative,
triangle inequality: d(u, v) < d(u,w) + d(w, v)

— possible to get close to optimum (we will later see factor 3/,)

— what about the nearest neighbor algorithm?

Algorithm Theory, WS 2017/18 Fabian Kuhn

18

Metric TSP, Nearest Neighbor :

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Metric TSP, Nearest Neighbor

UNI

FREIBURG

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost =24

Algorithm Theory, WS 2017/18 Fabian Kuhn

20

UNI
FREIBURG

Metric TSP, Nearest Neighbor

Triangle Inequality:

optimal tour on remaining nodes
<

overall optimal tour

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Metric TSP, Nearest Neighbor

Analysis works in phases:

In each phase, assign each optimal edge to some greedy edge
— Cost of greedy edge < cost of optimal edge

Each greedy edge gets assigned < 2 optimal edges
— At least half of the greedy edges get assigned

At end of phase:
Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

Triangle inequality: remaining opt. solution < overall opt. sol.

Cost of greedy edges assigned in each phase < opt. cost
Number of phases < log, n

— +1 for last greedy edge in tour

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

UNI
|

FREIBURG

UNI

Metric TSP, Nearest Neighbor

FREIBURG

* Assume:
NN: cost of greedy tour, OPT: cost of optimal tour

e We have shown:

N
opT — V082"

Example of an approximation algorithm

We will later see a 3/,-approximation algorithm for metric TSP

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Back to Scheduling

UNI
FREIBURG

* Given: n requests / jobs with deadlines:

length t; = 10

|deadline d; =11

t2=7 Id2=10
t; =3 |d; =13
t4,=5 Id4=7
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Goal: schedule all jobs with minimum lateness L

— Schedule: s(i), f (i): start and finishing times of request i
Note: f(i) = s(i) + ¢;

e Lateness L := max {O, miax{f(i) — di}}

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...

Algorithm Theory, WS 2017/18

Fabian Kuhn 24

UNI

Greedy Algorithm?

FREIBURG

Schedule jobs in order of increasing length?
* lgnores deadlines: seems too simplistic...
* E.g.:

t; = 10 | deadline d; = 10

Schedule:| t, = 2 t; =10

Schedule by increasing slack time?
* Should be concerned about slack time: d; — t;

t; = 10 | deadline d, = 10

t2=2 Id2=3

Schedule: t; =10 t, = 2

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Greedy Algorithm

UNI
FREIBURG

Schedule by earliest deadline?
* Schedule in increasing order of d;
* lIgnores lengths of jobs: too simplistic?

e Earliest deadline is optimall!

Algorithm:
* Assume jobs are reordered such thatd; < d, < --- <d,
 Start/finishing times:

— First job starts at time s(1) =0

— Duration of job iist;: f(i) = s(i) + t;

— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

UNI

FREIBURG

Example
Jobs ordered by deadline:
t; =5 |d, =7
t, = 3 |d, = 10
ty =7 ld, =11

t; =3 |d; =
(I)iﬁéélléé%éélolllzllalﬁ
Schedule:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Algorithm Theory, WS 2017/18 Fabian Kuhn

27

Basic Facts

UNI

FREIBURG

1. There is an optimal schedule with no idle time
— Canjust schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Earliest Deadline is Optimal

UNI

FREIBURG

Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
e Consider some schedule O’ with no idle time

* If O’ has inversions, 3 pair (i, j), s.t. i is scheduled immediately
before j and d; < d;

* Claim: Swapping i and j gives a schedule with
1. Fewer inversions
2. Maximum lateness no larger than in O’

Algorithm Theory, WS 2017/18 Fabian Kuhn 29

Earliest Deadline is Optimal

UNI

FREIBURG

Claim: Swapping i and j: maximum lateness no larger than in O’

Algorithm Theory, WS 2017/18 Fabian Kuhn

30

Exchange Argument

UNI
|

FREIBURG

* General approach that often works to analyze greedy algorithms

e Start with any solution

* Define basic exchange step that allows to transform solution into
a new solution that is not worse

* Show that exchange step move solution closer to the solution
produced by the greedy algorithm

* Number of exchange steps to reach greedy solution should be
finite...

Algorithm Theory, WS 2017/18 Fabian Kuhn 31

Another Exchange Argument Example

UNI
FREIBURG

 Minimum spanning tree (MST) problem
— Classic graph-theoretic optimization problem

* Given: weighted graph
* Goal: spanning tree with min. total weight

* Several greedy algorithms work

* Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle

Algorithm Theory, WS 2017/18 Fabian Kuhn

32

Kruskal Algorithm: Example

UNI
|

FREIBURG

L ()

13
3
14 4
7 2
28
16 31
12
20

Algorithm Theory, WS 2017/18 Fabian Kuhn

23

33

