
Chapter 2

Greedy Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Greedy Algorithms

• No clear definition, but essentially:

• Depending on problem, greedy algorithms can give
– Optimal solutions

– Close to optimal solutions

– No (reasonable) solutions at all

• If it works, very interesting approach!
– And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

In each step make the choice that
looks best at the moment!

In each step make the choice that
looks best at the moment!

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Interval Scheduling

• Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Goal: Select largest possible non-overlapping set of intervals
– For simplicity: overlap at boundary ok

(i.e., [4,7] and [7,9] are non-overlapping)

• Example: Intervals are room requests; satisfy as many as possible

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[11,14][11,14]

[5,12][5,12]

[8,10][8,10] [12,14][12,14]

[7,9][7,9] [9,12][9,12]

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Greedy Algorithms

• Several possibilities…

Choose first available interval:

Choose shortest available interval:

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[11,14][11,14]

[5,12][5,12]

[8,10][8,10] [12,14][12,14]

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[6,9][6,9]

[1,7][1,7] [8,14][8,14]

[7,9][7,9] [9,12][9,12]

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Greedy Algorithms

Choose available request with earliest finishing time:

𝑅 ≔ set of all requests; 𝑆 ≔ empty set;
while 𝑅 is not empty do

choose 𝑟 ∈ 𝑅 with smallest finishing time
add 𝑟 to 𝑆
delete all requests from 𝑅 that are not compatible with 𝑟

end // 𝑆 is the solution

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[11,14][11,14]

[5,12][5,12]

[7,9][7,9]

[8,10][8,10] [12,14][12,14]

[1,3][1,3]

[3,5][3,5]

[5,8][5,8]

[11,14][11,14]

[8,10][8,10]

[9,12][9,12]

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Earliest Finishing Time is Optimal

• Let 𝑂 be the set of intervals of an optimal solution

• Can we show that 𝑆 = 𝑂?
– No…

• Show that 𝑆 = 𝑂 .

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[11,14][11,14]

[5,12][5,12]

[8,10][8,10] [12,14][12,14]

[7,9][7,9] [9,12][9,12]

Greey SolutionGreey Solution Alternative Optimal Sol. Alternative Optimal Sol.

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Greedy Stays Ahead

• Greedy solution 𝑆:

𝑎1, 𝑏1 , 𝑎2, 𝑏2 , … , 𝑎 𝑆 , 𝑏 𝑆 , where 𝑏𝑖 ≤ 𝑎𝑖+1

• Some optimal solution 𝑂:

𝑎1
∗ , 𝑏1

∗ , 𝑎2
∗ , 𝑏2

∗ , … , 𝑎 𝑂
∗ , 𝑏 𝑂

∗ , where 𝑏𝑖
∗ ≤ 𝑎𝑖+1

∗

• Definde 𝑏𝑖 ≔ ∞ for 𝑖 > |𝑆| and 𝑏𝑖
∗ ≔ ∞ for 𝑖 > |𝑂|

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[11,14][11,14]

[5,12][5,12]

[8,10][8,10] [12,14][12,14]

[7,9][7,9] [9,12][9,12]

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Greedy Stays Ahead

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗

Proof (by induction on 𝑖):

Corollary: Earliest finishing time algorithm is optimal.

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Weighted Interval Scheduling

Weighted version of the problem:

• Each interval has a weight

• Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

• Algorithm needs to look at weights

• Else, the selected sets could be the ones with smallest weight…

No simple greedy algorithm:

• We will see an algorithm using another design technique later.

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Interval Partitioning

• Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals
– Assign intervals to different resources, where each resource needs to

get a non-overlapping set

• Example:
– Intervals are requests to use some room during this time

– Assign all requests to some room such that there are no conflicts

– Use as few rooms as possible

• Assignment to 3 resources:

[1,3][1,3]

[1,4][1,4]

[2,4][2,4]

[4,7][4,7]

[5,8][5,8]

[5,12][5,12]

[9,11][9,11] [12,14][12,14]

[9,12][9,12]

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Depth

Depth of a set of intervals:

• Maximum number passing over a single point in time

• Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

Lemma: Number of resources needed ≥ depth

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[11,14][11,14]

[5,12][5,12]

[8,10][8,10] [12,14][12,14]

[7,9][7,9] [9,12][9,12]

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Greedy Algorithm

Can we achieve a partition into “depth” non-overlapping sets?

• Would mean that the only obstacles to partitioning are local…

Algorithm:

• Assign labels 1,… to the intervals; same label  non-overlapping

1. sort intervals by starting time: 𝐼1, 𝐼2, … , 𝐼𝑛
2. for 𝑖 = 1 to 𝑛 do

3. assign smallest possible label to 𝐼𝑖
(possible label: different from conflicting intervals 𝐼𝑗, 𝑗 < 𝑖)

4. end

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Interval Partitioning Algorithm

Example:

• Labels:

• Number of labels = depth = 4

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[11,14][11,14]

[5,12][5,12]

[8,10][8,10] [12,14][12,14]

[7,9][7,9] [9,12][9,12]

[0,10][0,10][0,10][0,10]

[1,3][1,3]

[1,4][1,4]

[3,5][3,5]

[4,7][4,7]

[5,8][5,8]

[5,12][5,12]

[7,9][7,9]

[8,10][8,10]

[9,12][9,12]

[11,14][11,14]

[12,14][12,14]

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Interval Partitioning: Analysis

Theorem:

a) Let 𝑑 be the depth of the given set of intervals. The
algorithm assigns a label from 1,… , 𝑑 to each interval.

b) Sets with the same label are non-overlapping

Proof:

• b) holds by construction

• For a):

– All intervals 𝐼𝑗, 𝑗 < 𝑖 overlapping with 𝐼𝑖, overlap at the beginning of 𝐼𝑖

– At most 𝑑 − 1 such intervals  some label in {1, … , 𝑑} is available.

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Traveling Salesperson Problem (TSP)

Input:

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites)

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣): dist. from 𝑢 to 𝑣

• Distances usually symmetric, asymm. distances  asymm. TSP

Solution:

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of nodes

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣𝑛, 𝑣1 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal:

• Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

Example

3

13
4

9

1

10

32

33

3

3

8
2

20

2118

17

1

199

1

6 2
2

Optimal Tour:

Length: 86

Greedy Algorithm?

Length: 121

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Nearest Neighbor (Greedy)

• Nearest neighbor can be arbitrarily bad, even for TSP paths

1

1000

2 1

2

2

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

TSP Variants

• Asymmetric TSP
– arbitrary non-negative distance/cost function

– most general, nearest neighbor arbitrarily bad

– NP-hard to get within any bound of optimum

• Symmetric TSP
– arbitrary non-negative distance/cost function

– nearest neighbor arbitrarily bad

– NP-hard to get within any bound of optimum

• Metric TSP
– distance function defines metric space: symmetric, non-negative,

triangle inequality: 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

– possible to get close to optimum (we will later see factor Τ3 2)

– what about the nearest neighbor algorithm?

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:

1

2

3

4

5

6

7

9

8

10

11

12

1.3 1.12.1

0.8

1.9

4.0 2.1

1.3
1.23.4

3.1

1.7

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost = 24

1

2

3

4

5

6

7

9

8
10

11

12

1.3

1.1

2.1

0.8

1.9

4.0

2.1

1.3

1.23.4

3.1

1.7

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Metric TSP, Nearest Neighbor

Triangle Inequality:

optimal tour on remaining nodes
≤

overall optimal tour 7

9

10

11

12

2.1

1.3

3.4

3.1

1.7

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Metric TSP, Nearest Neighbor

Analysis works in phases:

• In each phase, assign each optimal edge to some greedy edge
– Cost of greedy edge ≤ cost of optimal edge

• Each greedy edge gets assigned ≤ 2 optimal edges
– At least half of the greedy edges get assigned

• At end of phase:
Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

• Triangle inequality: remaining opt. solution ≤ overall opt. sol.

• Cost of greedy edges assigned in each phase ≤ opt. cost

• Number of phases ≤ 𝐥𝐨𝐠𝟐 𝒏
– +1 for last greedy edge in tour

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Metric TSP, Nearest Neighbor

• Assume:
NN: cost of greedy tour, OPT: cost of optimal tour

• We have shown:
NN

OPT
≤ 1 + log2 𝑛

• Example of an approximation algorithm

• We will later see a Τ3 2-approximation algorithm for metric TSP

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Back to Scheduling

• Given: 𝑛 requests / jobs with deadlines:

• Goal: schedule all jobs with minimum lateness 𝐿
– Schedule: 𝑠(𝑖), 𝑓(𝑖): start and finishing times of request 𝑖

Note: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖

• Lateness 𝐿 ≔ max 0,max
𝑖

𝑓 𝑖 − 𝑑𝑖

– largest amount of time by which some job finishes late

• Many other natural objective functions possible…

0 1 2 3 4 5 76 8 9 10 11 12 13 14

length 𝑡1 = 10length 𝑡1 = 10

𝑡3 = 3𝑡3 = 3

𝑡4 = 5𝑡4 = 5

𝑡2 = 7𝑡2 = 7

deadline 𝑑1 = 11

𝑑2 = 10

𝑑3 = 13

𝑑4 = 7

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Greedy Algorithm?

Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic…

• E.g.:

Schedule by increasing slack time?

• Should be concerned about slack time: 𝑑𝑖 − 𝑡𝑖

𝑡1 = 10𝑡1 = 10 deadline 𝑑1 = 10

⋯ 𝑑2 = 100𝑡2 = 2𝑡2 = 2

𝑡2 = 2𝑡2 = 2 𝑡1 = 10𝑡1 = 10Schedule:

𝑡1 = 10𝑡1 = 10 deadline 𝑑1 = 10

𝑑2 = 3𝑡2 = 2𝑡2 = 2

𝑡2 = 2𝑡2 = 2𝑡1 = 10𝑡1 = 10Schedule:

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Greedy Algorithm

Schedule by earliest deadline?

• Schedule in increasing order of 𝑑𝑖
• Ignores lengths of jobs: too simplistic?

• Earliest deadline is optimal!

Algorithm:

• Assume jobs are reordered such that 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
• Start/finishing times:

– First job starts at time 𝑠 1 = 0

– Duration of job 𝑖 is 𝑡𝑖: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖
– No gaps between jobs: 𝑠 𝑖 + 1 = 𝑓 𝑖

(idle time: gaps in a schedule  alg. gives schedule with no idle time)

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Example

Jobs ordered by deadline:

Schedule:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡3 = 7𝑡3 = 7

𝑡3 = 3𝑡3 = 3

𝑡1 = 5𝑡1 = 5

𝑡2 = 3𝑡2 = 3

𝑑1 = 11

𝑑2 = 10

𝑑3 = 13

𝑑4 = 7

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡1 = 5𝑡1 = 5 𝑡2 = 3𝑡2 = 3 𝑡3 = 7𝑡3 = 7 𝑡3 = 3𝑡3 = 3

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Basic Facts

1. There is an optimal schedule with no idle time
– Can just schedule jobs earlier…

2. Inversion: Job 𝑖 scheduled before job 𝑗 if 𝑑𝑖 > 𝑑𝑗
Schedules with no inversions have the same maximum lateness

Algorithm Theory, WS 2017/18 Fabian Kuhn 29

Earliest Deadline is Optimal

Theorem:
There is an optimal schedule 𝒪 with no inversions and no idle time.

Proof:

• Consider some schedule 𝒪′ with no idle time

• If 𝒪′ has inversions, ∃ pair (𝑖, 𝑗), s.t. 𝑖 is scheduled immediately
before 𝑗 and 𝑑𝑗 < 𝑑𝑖

• Claim: Swapping 𝑖 and 𝑗 gives a schedule with
1. Fewer inversions

2. Maximum lateness no larger than in 𝒪′

Algorithm Theory, WS 2017/18 Fabian Kuhn 30

Earliest Deadline is Optimal

Claim: Swapping 𝑖 and 𝑗: maximum lateness no larger than in 𝒪′

Algorithm Theory, WS 2017/18 Fabian Kuhn 31

Exchange Argument

• General approach that often works to analyze greedy algorithms

• Start with any solution

• Define basic exchange step that allows to transform solution into
a new solution that is not worse

• Show that exchange step move solution closer to the solution
produced by the greedy algorithm

• Number of exchange steps to reach greedy solution should be
finite…

Algorithm Theory, WS 2017/18 Fabian Kuhn 32

Another Exchange Argument Example

• Minimum spanning tree (MST) problem
– Classic graph-theoretic optimization problem

• Given: weighted graph

• Goal: spanning tree with min. total weight

• Several greedy algorithms work

• Kruskal’s algorithm:
– Start with empty edge set

– As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle

Algorithm Theory, WS 2017/18 Fabian Kuhn 33

Kruskal Algorithm: Example

3

14
4

6

1

10

13

23

21

31

8
25

20

1118

17

16

199

12

7 2
28

