

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2017/18

Fabian Kuhn

Greedy Algorithms

No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
 - Optimal solutions
 - Close to optimal solutions
 - No (reasonable) solutions at all
- If it works, very interesting approach!
 - And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Exchange Argument

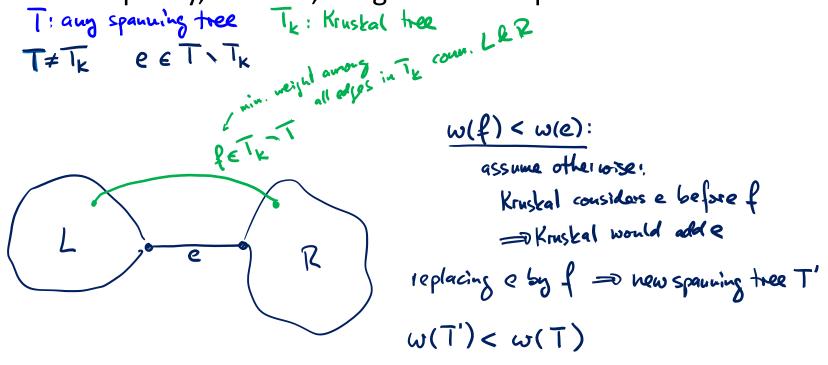
- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a spanning tree:
 add minimum weight edge that doesn't close a cycle

Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T
 - Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
 - Swapping does not increase total weight
- For simplicity, assume, weights are unique:



Matroids

$$E = \frac{2}{3}1, 2, 3, 4$$

 $I = \frac{2}{3}0, \frac{2}{3}1, \dots, \frac{2}{3}, \frac{2}{3}, \dots, \frac{2}{3}, \frac{2}{3}$

• Same, but more abstract...

Matroid: pair(E, I)

- *E*: set, called the **ground set**
- *I*: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq E$ and all $A' \subseteq A$,

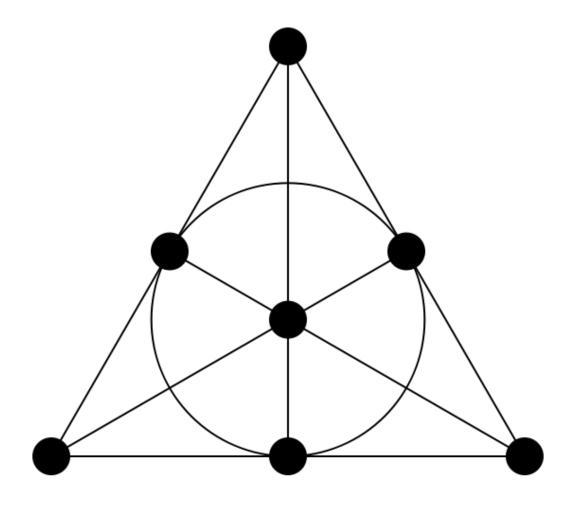
if $A \in I$, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $\underline{A, B \in I}$ and $\underline{|A|} > \underline{|B|}$, there exists $x \in A \setminus B$ such that

$$\mathbf{B}' \coloneqq \mathbf{B} \cup \{\mathbf{x}\} \in \mathbf{I}$$

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...



Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal (E,I)

• S: greedy solution $S \subseteq E$, $S \in \mathbb{T}$

A: any other solution $A \subseteq E$, $A \in \mathbb{Z}$

15121A1:

for contradiction, assume IAI>ISI: exch. prop.: $\exists x \in A \setminus S \text{ s.t. } S \cup 3 \times 3 \in \mathbb{T}$ greedy would add x

 $w(S) \ge w(A)$:

for contradiction, assume [w(S) < w(A)

 $S = \{x_1, x_2, ..., x_s\}$ $\omega(x_1) \ge \omega(x_2) \ge ... \ge \omega(x_s)$

A = {8,182, ..., ya} w(y,) = w(y) = .26(ya)

will show that (*)
∀i∈ II,..., a}: w(x;) ≥ w(y;)

Lo w(S) ≥ w(A)

7(*) => there is a smallest bea s.t. w(xx) < w(yx)

S'= {x,, ..., x, ...}

A'= 18,,..., 82}

augm. prop.: ∃y € A's': S'U?y\$ €I

w(y) = w(yx) > w(xx)

greedy considers of before xx

greedy would add y

Matroids: Examples

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests \rightarrow (E,\mathcal{F}) is a matroid
- Greedy algorithm gives maximum weight forest (equivalent to MST problem)

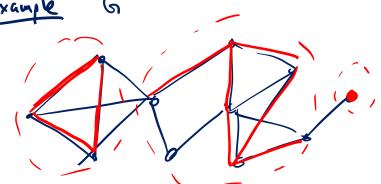
Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E,\mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

Bicircular Matroid



Claim: (E,B) is a matroid

Proof: We need to show that (E,B) satisfies proporties 1,2, and 3

Propl: ØEB (V, Ø) has no cycles

Prop 2. A & B - D A' & A : A' & B

Exch. prop (3) edge set $A \in \mathbb{R}$, $C \in \mathbb{B}$ $|C| > |A| \Rightarrow \exists e \in C \setminus A$

SA. AUYE3 & B

(V,A) (V,C)

Prevy comp. ≤ 1 cycle

Bicircular Matroid

Greedoid

- Matroids can be generalized even more
- Relax hereditary property:

Replace
$$A' \subseteq A \subseteq I \implies A' \in I$$

by $\emptyset \neq A \subseteq I \implies \exists a \in A, \text{ s.t. } A \setminus \{a\} \in I$

- Augmentation property holds as before
- Under certain conditions on the weights, greedy is optimal for computing the max. weight $A \in I$ of a greedoid.
 - Additional conditions automatically satisfied by hereditary property
- More general than matroids