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Greedy Algorithms
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* No clear definition, but essentially:

In each step make the choice that
looks best at the moment!

 Depending on problem, greedy algorithms can give
— Optimal solutions
— Close to optimal solutions
— No (reasonable) solutions at all

* Ifit works, very interesting approach!

— And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)
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Exchange Argument
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* General approach that often works to analyze greedy algorithms

e Start with any solution

* Define basic exchange step that allows to transform solution into
a new solution that is not worse

* Show that exchange step move solution closer to the solution
produced by the greedy algorithm

* Number of exchange steps to reach greedy solution should be
finite...

Algorithm Theory, WS 2017/18 Fabian Kuhn 3



Another Exchange Argument Example
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 Minimum spanning tree (MST) problem
— Classic graph-theoretic optimization problem

* Given: weighted graph
* Goal: spanning tree with min. total weight

* Several greedy algorithms work

* Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle
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Kruskal is Optimal
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* Basic exchange step: swap to edges to get from tree T to tree Z:
— Swap out edge not in Kruskal tree, swap in edge in Kruskal tree

— Swapping does not increase total weight

* For simplicity, assume, weights are unique:
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Matroids T36, 7% 30,98, ., 3§

e Same, but more abstract...
/34 secleun

Matroid: pair (E, I)
 E: set, called the ground set

* [:finite family of finite subsets of E (i.e., I € 2%),
called independent sets

(E,I) needs to satisfy 3 properties:

1. Empty setis independent, i.e., @ € I (implies that Ii_(Z))
2. Hereditary property: Forall A € E and all A" € A, o
ifA €I, thenalsoA' €1
3. Augmentation / Independent set exchange property:
If A,B € I and |A| > |B|, there exists x € A \ B such that

B':=BU{x}€el
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Example
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* Fano matroid:
— Smallest finite projective plane of order 2...
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Matroids and Greedy Algorithms
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Weighted matroid: each e € E has a weight w(e) > 0
Goal: find maximum weight independent set

Greedy algorithm:

1. StartwithS =0

2. Add max. weighte € E \ StoSsuchthatSu{e} el

Claim: greedy algorithm computes optimal solution
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Greedy is Optimal & D
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 S:greedy solution A: any other solution
S<E, Sel Act, A<D
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Matroids: Examples

Forests of a graph ¢ = (V,E):
e forest F: subgraph with no cycles (i.e., F € F)
« F:setof all forests 2 (E,F) is a matroid

* Greedy algorithm gives maximum weight forest
(equivalent to MST problem)

Qicircular matroid of agraph G = (V,E):
* B:setof edges such that every connected subset has < 1 cycle
* (E,B) is a matroid = greedy gives max. weight such subgraph

-

Linearly independent vectors:
* Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.

 Fano matroid can be defined like that
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Bicircular Matroid
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Bicircular Matroid
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Greedoid

 Matroids can be generalized even more

e Relax hereditary property:
Replace A'c€Ac] = A €l

by O+AC] = 3da€A s.t. A\{a} el

* Augmentation property holds as before

* Under certain conditions on the weights, greedy is optimal for
computing the max. weight A € [ of a greedoid.
— Additional conditions automatically satisfied by hereditary property

 More general than matroids
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