
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2017/18

Fabian Kuhn



Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Weighted Interval Scheduling

• Given: Set of intervals, e.g. 
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight 𝒘

• Goal: Non-overlapping set of intervals of largest possible weight
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests of different importance

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8



Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Greedy Algorithms

Choose available request with earliest finishing time:

• Algorithm is not optimal any more
– It can even be arbitrarily bad…

• No greedy algorithm known that works

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 2



Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛



Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛

• Weight of optimal solution for only intervals 1,… , 𝑘: 𝑊 𝑘
Define 𝑝 𝑘 ≔ max 𝑖 ∈ 0,… , 𝑘 − 1 ∶ 𝑓 𝑖 ≤ 𝑠 𝑘

• Opt. solution does not contain interval 𝑛: 𝑾 𝒏 = 𝑾 𝒏− 𝟏

Opt. solution contains interval 𝑛: 𝑾 𝒏 = 𝒘 𝒏 +𝑾(𝒑 𝒏 )



Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Example

[0,5], w=2

[1,7], 4

[5,9], 4

[10,13], 1

[2,11], 5

[9,12], 2

𝟏

Interval:

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑



Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Recursive Definition of Optimal Solution

• Recall:
– 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘

– 𝑝 𝑘 : last interval to finish before interval 𝑘 starts

• Recursive definition of optimal weight:

∀𝑘 > 1: 𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘

𝑊 1 = 𝑤(1)

Immediately gives a simple, recursive algorithm

Compute p(k) values for all k

W(k):
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
return x



Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Running Time of Recursive Algorithm

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝑊(6)

𝑊(5) 𝑊(3)

𝑊(4) 𝑊(3) 𝑊(2) 𝑊(1)

𝑊(3)

𝑊(2)

𝑊(1)

𝑊(1)

𝑊(2) 𝑊(1) 𝑊(1)

𝑊(1)



Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Memoizing the Recursion

• Running time of recursive algorithm: exponential!

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛)

• There is no need to compute them multiple times

Memoization: Store already computed values for future rec. calls

Compute p(k) for all k

memo = {};

W(k):
if k in memo: return memo[k]
if k == 1:

x = w(1)
else:

x = max{W(k-1), w(k) + W(p(k))}
memo[k] = x
return x



Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems
has to be solved again

Weighted interval scheduling: subproblems 𝑊 1 ,𝑊 2 ,𝑊 3 ,…

runtime = #subproblems ⋅ time per subproblem

10

Dynamic Programming (DP)

DP ≈ Recursion + Memoization



Algorithm Theory, WS 2017/18 Fabian Kuhn 11

• Where das does the name come from?

• DP was developed by Richard E. Bellman in 1940s/1950s.

• In his autobiography, it says:
"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for 
multistage decision processes. … The 1950s were not good years for 
mathematical research. We had a very interesting gentleman in Washington 
named Wilson. He was Secretary of Defense, and he actually had a pathological 
fear and hatred of the word research. … His face would suffuse, he would turn 
red, and he would get violent if people used the term research in his presence. 
You can imagine how he felt, then, about the term mathematical. … Hence, I felt 
I had to do something to shield Wilson and the Air Force from the fact that I was 
really doing mathematics inside the RAND Corporation. What title, what name, 
could I choose? In the first place I was interested in planning, in decision making, 
in thinking. But planning, is not a good word for various reasons. I decided 
therefore to use the word “programming”. I wanted to get across the idea that 
this was dynamic, this was multistage, this was time-varying. … It also has a 
very interesting property as an adjective, and that it's impossible to use the 
word dynamic in a pejorative sense. … Thus, I thought dynamic programming 
was a good name. It was something not even a Congressman could object to. …“

11

DP: Some History …



Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Example

Computing the schedule: store where you come from!

𝒘 = 𝟐

𝒘 = 𝟒

𝒘 = 𝟒

𝒘 = 𝟏

𝒘 = 𝟓

𝒘 = 𝟐

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝒘 = 𝟑𝟕 𝒑 𝟕 = 𝟓

𝒘 = 𝟔𝟖 𝒑 𝟖 = 𝟒

𝟎𝑾: 𝟐 𝟒 𝟔 𝟔 𝟖 𝟖 𝟏𝟏 𝟏𝟐

𝑊[0]𝑊[1]𝑊[2]𝑊[3]𝑊[4]𝑊[5]𝑊[6]𝑊[7]𝑊[8]


