

Chapter 4 Amortized Analysis

Algorithm Theory WS 2017/18

Fabian Kuhn

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

Best case

Worst case

Average case

running time for a typical input

raudous

Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Example 1: Augmented Stack

Stack Data Type: Operations

• $S.\operatorname{push}(x)$: inserts x on top of stack

• S.pop(): removes and returns top element

Complexity of Stack Operations

• In all standard implementations: O(1)

Additional Operation

- S.multipop(k): remove and return top k elements
- Complexity: O(k)
- What is the amortized complexity of these operations?

Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations i = 1, 2, 3, ..., n
- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of op.,

$$\underline{T} = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i \quad (+ \bigcirc)$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i = O(1)$
- $S. \operatorname{multipop}(k)$: actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
 - The total number of "popped" elements cannot be more than the total number of "pushed" elements: cost for pop/multipop ≤ cost for push

Augmented Stack: Amortized Cost

Amortized Cost

$$T = \sum_{i} t_i \le \sum_{i} a_i$$

Actual Cost of Augmented Stack Operations

- $S.\operatorname{push}(x), S.\operatorname{pop}()$: actual cost $t_i \leq \underline{c}$
- S. multipop(k) : actual cost $t_i \leq c \cdot k$

```
n operations

P = n push ops. total push cost = C.P

total # del. elements = p total pop/multipop cost = C.P

total (ost \in Z.C.P

ang. cost per op. \leq \frac{2cP}{n} \leq \frac{2cp}{p} = 2c
```

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost
	00000	
1	00001	1
2	000 10	2
3	0001 <mark>1</mark>	1
4	00 100	3
5	0010 <mark>1</mark>	1
6	001 10	2
7	0011 1	1
8	01000	4
9	0100 <mark>1</mark>	1
10	010 10	2
11	0101 <mark>1</mark>	1
12	01 100	3
13	0110 1	1

Accounting Method

Observation:

Each increment flips exactly one 0 into a 1

$$00100011111 \Rightarrow 0010010000$$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					0
1	00001	1	l	0	2	1
2	00010	2	1	1	2	1
3	00011	1		0	2	2
4	00100	3	l	2	2	1
5	00101	1		0	2	2
6	00110	2		1	2	2
7	00111	1	I	0	2	3
8	01000	4	ı	3	2	l
9	01001	1	ı	0	2	2
10	01010	2)		2	2
C + B - F = A						
×>0 C ≤ A						

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in S$ (state space)

Potential function
$$\Phi: \mathcal{S} \to \mathbb{R}_{\geq 0}$$

initial potential
$$\phi_0 \ge 0$$

typically $\phi_0 = 0$

• Operation i:

- t_i : actual cost of operation i
- S_i : state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$\sum_{i=1}^{n} a_{i} = t_{1} - \phi_{0} + \phi_{1} + \phi_{2} + \phi_{3} + t_{3} + t_{4} + t_{4} + t_{5}$$

$$-\phi_{n-2} + \phi_{n-1} + \phi_{n}$$

$$\frac{\phi_{n} \ge \phi_{0}}{\ge t_{i}} \le \ge a_{i}$$

Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0=0$ and $\Phi_i\geq 0$ for all $i\geq 0$
- Actual cost t_i:
 - 1 flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Example 3: Dynamic Array

- How to create an array where the size dynamically adapts to the number of elements stored?
 - e.g., Java "ArrayList" or Python "list"

Implementation:

- Initialize with initial size N_0
- Assumptions: Array can only grow by appending new elements at the end
- If array is full, the size of the array is increased by a factor eta>1

Operations (array of size *N*):

- read / write: actual cost O(1)
- append: actual cost is O(1) if array is not full, otherwise the append cost is $O(\beta \cdot N)$ (new array size)

Example 3: Dynamic Array

Notation:

- n: number of elements stored
- N: current size of array (before spendion)

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } \frac{n < N}{n} \\ \underline{\beta \cdot N} & \text{if } \frac{n = N}{n} \end{cases}$

Claim: Amortized append cost is O(1)

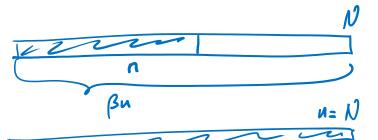
Carolina SI)

Potential function Φ ?

- should allow to pay expensive append operations by cheap ones
- when array is full, Φ has to be large
- immediately after increasing the size of the array, Φ should be small again

Dynamic Array: Potential Function

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$



$$(\emptyset = 0)$$

$$\phi(n,N) = c \cdot (\beta n - N) + c N_0$$

$$C(\beta N - N) \ge \beta N$$

$$C(\beta - 1) \ge \beta$$

$$C \ge \frac{\beta}{\beta - 1}$$

$$\oint(n,N) = \frac{\beta}{\beta-1} (\beta n - N) + \frac{\beta}{\beta-1} N_0$$

Dynamic Array: Amortized Cost 🤫 = 🤄 + 🍖 - 🍖 -

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

$$\phi(n,N) = \frac{\beta}{\beta - 1} \left(\beta n - N + N_0 \right)$$

amorbited cost a:

$$Cax | (n < N) : a_i = 1 + \frac{\beta^2}{\beta - 1} (n + 1 - N) = 1 + \frac{\beta^2}{\beta - 1}$$

$$a_{i} = \beta N + \left[\frac{\beta}{\beta - 1} \left(\beta(N+1) - \beta N\right) - \frac{\beta}{\beta - 1} \left(\beta N - N\right)\right] = \frac{\beta^{2}}{\beta - 1}$$

$$\frac{\beta^{2}}{\beta-1} - \frac{\beta}{\beta-1}(\beta-1)N$$

$$\beta N$$

$$\frac{\beta^{2}}{\beta-1} - \frac{\beta}{\beta-1} (\beta-1) N$$

$$\frac{\text{Gwathred cost:}}{\beta-1}$$