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Amortization
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* Consider sequence 04, 0, ..., 0, of n operations
(typically performed on some data structure D)

* ;: execution time of operation o;

T :=1t;+t, + -+ t,: total execution time
- - Z

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive
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Analysis of Algorithms
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* Best case

[- Worst casej
NMuddua
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l° Average case] “*“‘*°“6 Y] X‘or a L“):cw( \.,fu{-

L-/Amortizedﬁorst cag

What is the average cost of an operation
in a worst case sequence of operations?
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Example 1: Augmented Stack
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Stack Data Type: Operations

 S.push(x) :inserts x on top of stack
* S.pop() : removes and returns top element

Complexity of Stack Operations
* In all standard implementations: O(1)

Additional Operation
* S.multipop(k) : remove and return top k elements

« Complexity: 5(~IO

 What is the amortized complexity of these operations?
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Augmented Stack: Amortized Cost
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Amortized Cost
 Sequence of operationsi =1,2,3,...,n
* Actual cost of op. i: ¢;

—

* Amortized cost of op. i is a; if for every possible seq. of op.,

l:it;iai (+ O
i=1 i=1

———
—_—

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actual cost t; = 0(1)
« S.multipop(k) : actual cost t; = 0(k)

 Amortized cost of all three operations is constant

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push
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Augmented Stack: Amortized Cost
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Amortized Cost
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Actual Cost of Augmented Stack Operations
* S.push(x), S.pop(): actual cost t; < ¢

« S.multipop(k)
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Example 2: Binary Counter
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Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2017/18 Fabian Kuhn



Accounting Method
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Observation:
* Eachincrement flips exactlyoneOintoa 1

0010001111 = 0010010000

Idea:

* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x

* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost: 2)
* Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!
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Accounting Method
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Potential Function Method
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Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

State of data structure / system: S € § (state space)
Potential function #:$ — R, ikl pleaisal ®, > o

= 4‘&5’"‘“”() (bo-_- o

Operation i:
— t;: actual cost of operation i

[

— .‘S;L state after execution of operation i (Sj: initial state)
-

— ®; = P(S;): potential after exec. of operation i

— a;: amortized cost of operation i:

a; =t +®; —P;_,4

“— —
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Operation i:
actual cost: t; amortized cost: a; = t; + &; — P;_4

Overall cost:
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Binary Counter: Potential Method
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Potential function:

&: number of ones in current counter

Clearly, @y = 0and ®; = Oforalli = 0

Actual cost t;:
= 1 flipfromOto1l
= t; — 1flipsfrom1toO

Potential difference: ®;, —®;_; =1—(t; — 1) =

Amortized cost: a; = t; + ; —D;_; = 2
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Example 3: Dynamic Array
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* How to create an array where the size dynamically adapts to the
number of elements stored?
— e.g., Java “ArrayList” or Python “list” # dew : n

Sire : A)

Implementation:

* Initialize with initial size N,

* Assumptions: Array can c‘)Tw__Iy grow by appending new elements
at the end

* If array is full, the size of the array is increased by a factor f > 1

Operations (array of size N): 7’@
» read / write: actual cost 0(1) o< ¥, —

Lwd actual costis O(1) if array is not full, othem'

the append cost |s\0 (B - N))(new array size)
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Example 3: Dynamic Array
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Notation:
* n:number of elements stored

* N:current size of array (bLJo«( s(m«o‘wu)

Cost t; of it" append operation: t; = { 1 ifn < V
i LT BN ifn=N
) ,
Claim: Amortized append cost is O(1) =\
ez == —{
Potential function &®? (20

* should allow to pay expensive append operations by cheap ones
 when array is full, ® has to be large

 immediately after increasing the size of the array, ® should be
small again
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Dynamic Array: Potential Function L
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Dynamic Array: Amortized Cost «=¢ ¢ -4., _
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