Chapter 4
Amortized Analysis

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI

FREIBURG

Amortization

UNI
f

FREIBURG

* Consider sequence 04, 0, ..., 0, of n operations
(typically performed on some data structure D)

* ;: execution time of operation o;

T :=1t;+t, + -+ t,: total execution time
- - Z

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Analysis of Algorithms

UNI

FREIBURG

* Best case

[- Worst casej
NMuddua

_ J

l° Average case] “*“‘*°“6 Y] X‘or a L“):cw(\.,fu{-

L-/Amortizedﬁorst cag

What is the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2017/18 Fabian Kuhn

Example 1: Augmented Stack

UNI

FREIBURG

Stack Data Type: Operations

 S.push(x) :inserts x on top of stack
* S.pop() : removes and returns top element

Complexity of Stack Operations
* In all standard implementations: O(1)

Additional Operation
* S.multipop(k) : remove and return top k elements

« Complexity: 5(~IO

 What is the amortized complexity of these operations?

Algorithm Theory, WS 2017/18 Fabian Kuhn

Augmented Stack: Amortized Cost

UNI
f

FREIBURG

Amortized Cost
 Sequence of operationsi =1,2,3,...,n
* Actual cost of op. i: ¢;

—

* Amortized cost of op. i is a; if for every possible seq. of op.,

l:it;iai (+ O
i=1 i=1

———
—_—

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actual cost t; = 0(1)
« S.multipop(k) : actual cost t; = 0(k)

 Amortized cost of all three operations is constant

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
DYDY
i i

Actual Cost of Augmented Stack Operations
* S.push(x), S.pop(): actual cost t; < ¢

« S.multipop(k)

Pn ‘)us(a opS. ’\‘DL(VUL\ cest = C“?

"‘D'\"\\ ¥ LK. e(Qtueu“S s 9 Hdal ?ar/w.ukh‘»q cosd =

)\bl“l & P 2’4‘?

2¢ <
avy. cost qer ep. < —;;?S 2——5

ractualcostt; < c-k

:ZC

—_—

Algorithm Theory, WS 2017/18 Fabian Kuhn

c-p

Example 2: Binary Counter

UNI
f

FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2017/18 Fabian Kuhn

Accounting Method

UNI
f

FREIBURG

Observation:
* Eachincrement flips exactlyoneOintoa 1

0010001111 = 0010010000

Idea:

* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x

* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost: 2)
* Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2017/18 Fabian Kuhn

Accounting Method

UNI

FREIBURG

Op.

Counter

Cost

To Bank

From Bank

Net Cost

Credit

00000

Q

00001

00010

00011

00100

00101

00110

00111

01000

O 00 N oo v | W N -

01001

|

[HEY
o

01010

NDnlkr i plRrINIRP Wik R

Algorithm Theory, WS 2017/18

)
+ B -

LH =10 WO |[-|ol~do|—|O

~Y

x 20
Fabian Kuhn

BPINININININ|NININININ

iNN~v~\NN‘N\—

X
n\v
0

Potential Function Method

UNI

FREIBURG

Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

State of data structure / system: S € § (state space)
Potential function #:$ — R, ikl pleaisal ®, > o

= 4‘&5’"‘“”() (bo-_- o

Operation i:
— t;: actual cost of operation i

[

— .‘S;L state after execution of operation i (Sj: initial state)
-

— ®; = P(S;): potential after exec. of operation i

— a;: amortized cost of operation i:

a; =t +®; —P;_,4

“— —

Algorithm Theory, WS 2017/18 Fabian Kuhn

10

UNI

Potential Function Method ¢.: 0

FREIBURG

Operation i:
actual cost: t; amortized cost: a; = t; + &; — P;_4

Overall cost:

A 20 = Z’(("'@.," éo
?a] = ‘tl - d>° + bﬂ
Y . {Z ‘d)| R d)z
+ 4 - b, *“63 (b"‘?’ d>°
| 2‘(‘ = Zal
£ & Yuo +9,.,
4+t -Qh_,‘ +&“

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Binary Counter: Potential Method

|
FRE:BURG

UNI

Potential function:

&: number of ones in current counter

Clearly, @y = 0and ®; = Oforalli = 0

Actual cost t;:
= 1 flipfromOto1l
= t; — 1flipsfrom1toO

Potential difference: ®;, —®;_; =1—(t; — 1) =

Amortized cost: a; = t; + ; —D;_; = 2

Algorithm Theory, WS 2017/18 Fabian Kuhn

2 —t;

————
—_—

12

Example 3: Dynamic Array

UNI
f

FREIBURG

* How to create an array where the size dynamically adapts to the
number of elements stored?
— e.g., Java “ArrayList” or Python “list” # dew : n

Sire : A)

Implementation:

* Initialize with initial size N,

* Assumptions: Array can c‘)Tw__Iy grow by appending new elements
at the end

* If array is full, the size of the array is increased by a factor f > 1

Operations (array of size N): 7’@
» read / write: actual cost 0(1) o< ¥, —

Lwd actual costis O(1) if array is not full, othem'

the append cost |s\0 (B - N))(new array size)

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Example 3: Dynamic Array

UNI

FREIBURG

Notation:
* n:number of elements stored

* N:current size of array (bLJo«(s(m«o‘wu)

Cost t; of it" append operation: t; = { 1 ifn < V
i LT BN ifn=N
) ,
Claim: Amortized append cost is O(1) =\
ez == —{
Potential function &®? (20

* should allow to pay expensive append operations by cheap ones
 when array is full, ® has to be large

 immediately after increasing the size of the array, ® should be
small again

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Dynamic Array: Potential Function L

UNI
FREIBURG

1 ifn <N
] :th 1 . . =
Cost t; of i"" append operation: ¢; {,3 N ifn=N
A] a{"l"l e
Tz Zz——2—" | 1 é Sucal[(d: 0) iz dﬁ
C n), N‘ Uo

Pu u= N
== by ($2RN)

4)(./.,») = c.((g,,, V) +<B,

c((ﬂ% V) = N

o) = 2= (fn - + L
(BN UM) e é\)
. &

C -1

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Dynamic Array: Amortized Cost «=¢ ¢ -4., _

UNI
FREIBURG

' N
Cost t; of it" append operation: t; = {,3 -1N igz i N
>
Ol k) = = (fn-n +05)
owmeshied cod a; = 2
case | (V\<N) Q.= | + Fr(nn-ﬂ = |+‘:T
(asQZ(V\"N‘)
= BN+ —F ((’;(nﬂ) (Sk)\) - GN N) (;2
(al r;—l [5 =)
_vw
EE\‘ - g([ﬁ-l)r\) T
\r—g
(N

Algorithm Theory, WS 2017/18 Fabian Kuhn

16

