Chapter 5
Data Structures

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI

FREIBURG

Priority Queue / Heap

UNI
f

FREIBURG

* Stores (key,data) pairs (like dictionary)

But, different set of operations:

* Initialize-Heap: creates new empty heap
* Is-Empty: returns true if heap is empty
K Insert(key,data): inserts (key,data)-pair, returns pointer to entry

* Get-Min: returns (key,data)-pair with minimum key ot
COMS:
* Delete-Min: deletes minimum (key,data)-pair |

__* Decrease-Key(entry,newkey): decreases key of entry to newkey
 Merge: merges two heaps into one

/—

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Priority Queue Implementation

UNI
FREIBURG

Implementation as min-heap:

- complete binary tree,
e.g., stored in an array

Initialize-Heap: 0(1)

* |s-Empty: 0o(1) e @

* Insert: O(log "ﬁ
e Get-Min: 0o(1)
e Delete-Min: O(logn)

* Decrease-Key: O(logn) /

V\='V|/ m = l‘El

CX\M IGSM)

* Merge (heaps of size mandn, m < n): O(mlogn)

Algorithm Theory, WS 2017/18 Fabian Kuhn

Can We Do Better?

UNI
FREIBURG

* Cost of Dijkstra with complete binary min-heap implementation:
O(|E[log|V])

* Binary heap:
insert, delete-min, and decrease-key cost O (logn)
merging two heaps is expensive

* One of the operations insert or delete-min must cost (2(logn):

—_—

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least Q(nlogn).

* But maybe we can improve merge, decrease-key, and one of the
other two operations?

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Fibonacci Heaps

UNI
f

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the

min-heap property. 7\ .

Key of a node v < keys of all nodes in any sub-tree of v

Min-Heap Property:

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Fibonacci Heaps

UNI

FREIBURG

Structure:

A Fibonacci heap H consist%‘oj a collection of trees satisfying the
@Ot A% A
min-heap property. 4 ,/“"‘“

=T ->\ * el "ﬁ _— —l —
...(//\&’f‘,/ — — 04-//6\'<—'
—_ ——
—

« H.min: root of the tree containing the (a) minimum key

Variables:

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

—

Lazy Merging:

 To reduce the number of trees, sometimes, trees need to be
merged

. W: Do not merge as long as possible...

Algorithm Theory, WS 2017/18 Fabian Kuhn

Trees in Fibonacci Heaps

Structure of a single node v: /‘ /)¢F A i,
, 7 NN
parent 4‘:,\9 Pme==o
g Q degriee ‘% "
B child/ mark B

/ Tb»tm f(az,
e v.child: points to circular, doubly linked and unordered list of
the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)
 v.mark: will be used later...

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
* Concatenating two lists takes constant time

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

UNI
f

FREIBURG

Example

UNI

FREIBURG

Algorithm Theory, WS 2017/18

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
 update H.min

Insert element e into H:

* create new one-node tree containing e 2>
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2017/18 Fabian Kuhn

!

—my

Operation Delete-Min

UNI
FREIBURG

Delete the node with minimum key from H and return its element:

e
1. m:= H.min; N G—QZ’S;_%/O
i 2. ifH.size > 0 then 400
3. remove H. min from H.rootlist;
4 add H.min. child (list) to H.rootlist
VS. H.Consolidate();)
L

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.

// Determine the element with minimum key

~—

6. returnm e} O Hledlsi] & D)

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Rank and Maximum Degree

UNI

FREIBURG

Ranks of nodes, trees, heap:

Node v:
 rank(v): degree of v (number of children of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:

neap i1
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n) = (o5)

S

— for a known function D (n)
—_—

Algorithm Theory, WS 2017/18 Fabian Kuhn

11

Merging Two Trees

UNI

FREIBURG

\
-

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

_—

* Assume: min-key of T < min-key of T’

link
T / \ T’

Operation link(T,T'):

. Removes tree T, from rOOt IiSt
and adds T’ to child list of T ;i ;{

* rank(T) :=rank(T) +1 .

Xs‘&

. L(T’.mark = fa‘l_s—e)J

Algorithm Theory, WS 2017/18 Fabian Kuhn

12

. . . et Y1 11-1] &2
Consolidation of Root List |
Array A pointing to find roots with the same rank:

77 .
0 1 2 D(n) /‘*‘4" °f

Consolidate: -
Time:

O(|H.rootlist|+D(n))

fori := 0to D(n) do Ali] := null;
while H.rootlist # nulldo

1

2

3 £:= “delete and return first element of H.rootlist”
4 » while A[rank(T)] # nulldo <— T
5. T' == Alrank(T)]; N

6 Alrank(T)] = null=— g Wood] 4D & it o)
7 } T = link(T,T")

8 A[raznk(T)] =T

9. Create new H.rootlist and H.min

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

==

< [H.avt L)) =i

Consolidate Example

link

@ B g ------ ----- &0 @

©
19 (@

Algorithm Theory, WS 2017/18 Fabian Kuhn

Consolidate Example

link

Algorithm Theory, WS 2017/18 Fabian Kuhn

15

Consolidate Example

Algorithm Theory, WS 2017/18 Fabian Kuhn

16

Consolidate Example

link

Algorithm Theory, WS 2017/18 Fabian Kuhn

17

Consolidate Example

Algorithm Theory, WS 2017/18 Fabian Kuhn

18

Consolidate Example

Algorithm Theory, WS 2017/18 Fabian Kuhn

19

Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

1. ifx = v.key then return;
2. . key = x; update H. min;
3. ifv € H.rootlist V x > v.parent. key then return
4. repeat /
5. parent := v.parent; g; g
6. H.cut(v); %/
7. v = parent; it
8. until -(v.mark) vV v € H.rootlist; /)XZD X<Q7
9. ifv & H.rootlist then v.mark := true; _\ 3
L X W “‘f prp-
IS\ ola feef

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Operation Cut(v)

UNI
f

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v &€ H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent = null;

A A T o

add v to H.rootlist; v.mark := false;

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory, WS 2017/18 Fabian Kuhn

22

UNI

Fibonacci Heaps Marks

FREIBURG

 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Fibonacci Heap Marks o

FREIBURG

T
X

History of a node v:

v is being linked to a node v.mark = false
a child of v is cut v.mark := true
a second child of v is cut H.cut(v);

v.mark = false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another
node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:
1. Delete min. root r and add r. child to H.rootlist
time: 0(1)
2. Consolidate H.rootlist T
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2017/18 Fabian Kuhn

25

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

* Can we show that the average cost per operation is small?

* We can =2 requires amortized analysis

Algorithm Theory, WS 2017/18 Fabian Kuhn

26

UNI

Fibonacci Heaps Complexity

FREIBURG

* Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

* Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Recall:
* Data structure that allows operations Oy, ..., Oy

—_—

* We say that operation QE has amortized cost a,, if for every
execution the total time is o

where n,, is the number of operations of type 0,

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Amortized Cost of Fibonacci Heaps

UNI

FREIBURG

* [|nitialize-heap, is-empty, get-min, insert, and merge
have worst-case cost O0(1) aud awsshied oy O(I)

* Delete-min has amortized cost O(logn)
* Decrease-key has amortized cost O(1)
_—

* Starting with an empty heap, any sequence of n operations
with at most ng delete-min operatlons has total cost (time)

T=0n+ ng logn)

e We will now need the marks... o 0‘8” O + M?“)

 Cost for Dijkstra: O(|E| + |V|log |V])

—

Algorithm Theory, WS 2017/18 Fabian Kuhn

28

UNI

Fibonacci Heaps: Marks

FREIBURG

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark := true

3. Second child of v is cut
node v is cut as well and moved to root list

v.mark := false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2017/18 Fabian Kuhn 29

Potential Function ®R= (i mt0st]

UNI
FREIBURG

System state characterized by two parameters:

* R:number of trees (length of H.rootlist) b= 2+

* M: number of marked nodes (not in the root list)

Potential function: /
®=R+2M

Example:

+ R=7,M=2 > &=11

Algorithm Theory, WS 2017/18 Fabian Kuhn 30

Actual Time of Operations

UNI

FREIBURG

* Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

—_—

— Normalize unit time such that
<1

Linit) tis—empty: Linserts tget—miru tmerge
* Operation delete-min:

— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that

tael-min < D(n) + length of H.rootlist =7 +

e Operation descrease-key:

— Actual time: O(length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2017/18 Fabian Kuhn

31

Amortized Times

UNI

FREIBURG

Assume operation i is of type:

* initialize-heap:
— actualtime: t; < 1, potential: ®;_; = ®; =0

— amortized time: a; = t; + ¢; —P;_; <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_; (heap doesn’t change)
— amortized time:a; = t; + ¢; —P;_1 <1

* merge:

— Actualtime: t; <1

— combined potential of both heaps: ®; = ®;_4

— amortized time: a; = t; + ¢; —P;_1 <1
_—

Algorithm Theory, WS 2017/18 Fabian Kuhn

32

Amortized Time of Insert b= +2M

UNI

FREIBURG

Assume that operation i is an insert operation:
 Actualtime:¢; <1

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)
R e

Mi — Mi_l’ Ri — Ri—l + 1
(Di — cDi—l + 1

e Amortized time:
ai=ti+<I>,-—<l>i_1 SZ
< \/_, B—

=

Algorithm Theory, WS 2017/18 Fabian Kuhn 33

Amortized Time of Delete-Min

UNI
FREIBURG

Assume that operation i is a delete-min operation:

Actual time: t; < D(n) + [H.rootlist|

_ . R:-2:, = Do+t — (H.eootUsi)
Potential function ® = R + 2M:

* R:changes from |H.rootlist| to at most D(n) + 1

« M: (# of marked nodes that are not in the root list)
— Number of marks does not irigresse C/Zuw?z

M; = M;_4, R, <R;_{+D(n)+1—|H.rootlist]

L’_\J
b, <P, +D(n)+1—|H.rootlist|

Amortized Time:
a; =t; + (I)i — (I)i—l < ZD(n) +1

e

Algorithm Theory, WS 2017/18 Fabian Kuhn 34

Amortized Time of Decrease-Key

UNI
f

FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

</mw wal Q

W —_—
e o/

“V-'l)(OX {:; = L4l

vy /“ '#(MM('J »emoud >/£
o

U X ’-& werks addec| < |
e
"0
X - < ()=
o Moo= M, s -@-0

Algorithm Theory, WS 2017/18 Fabian Kuhn 35

Amortized Time of Decrease-Key

UNI
f

FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— Uy, ..., U, are marked and moved to root list, v. mark is set to true
> k marked nodes go to root list, < 1 node gets newly marked
* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

Ri<R,_,+k+1 M;<M;,_,+1—k
;< b+ (k+1)—2(k—1) =P, +3—k

B ————
—

Amortized time:

a,=t;+P;,— P, <k+1+3-k=4
i =: i i—1 \ (=
{i A¢

Algorithm Theory, WS 2017/18 Fabian Kuhn 36

Complexities Fibonacci Heap

|
FRE:BURG

UNI

* Initialize-Heap: 0(1)

* Is-Empty: 0(1)
* Insert: 0(1)
* Get-Min: 0(1)

* Delete-Min: 0(D(n)) .
(> amortized

* Decrease-Key: 0(1)

* Merge (heaps of size mand n, m < n): 0(1)

* How large can D(n) get?

—_—

p—

Algorithm Theory, WS 2017/18 Fabian Kuhn 37

UNI
f

FREIBURG

Rank of Children

Lemma:

Consider a node v of rank k and let uq, ..., u; be the children of
v in the order in which they were linked to v. Then,

rank(u;) > i — 2.

e — Q S
PrOOf: }ﬁ\ m,&g Gre Qaaa-l
’ A
o —
/ l\\\] /&32(23
“k “c,‘ u3 \Al “0 - 22
zk-2 22 2L 20 2o

Algorithm Theory, WS 2017/18 Fabian Kuhn 38

Size of Trees

UNI
FREIBURG

Fibonacci Numbers:

FO=O,

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with
rank k is at least Fy, .

ey
—_—

F

1, Vk = Z:Fk — Fk—l + Fk—Z

Proof:

—

* Si: minimum size of the sub-tree of a node of rank k

Algorithm Theory, WS 2017/18

SO;\ S’:Z

/
k-2
k22 S =2+ =€
f (=o

&7 rrev. (QIM\MA

Fabian Kuhn

39

Size of Trees T =T " Tem
k—2
So =1, Sy =2, Vk22:5k22+25i
. . . =
e Claim about Fibonacci numbers: —
Vk 2 O:Fk+2 = 1 +2Fl
=
?ﬂ; L\\"JV\U"\\&M 'mk) l
k=06 —-FZ: |+ 1, = 94+ T /
- b1 __ L
k00 F - F, 4T, = L+l S+ =1+ é*.
—_— L+ \’:_: ?;o ¥,
IH: et
Tkﬂ: |+ f\?‘ D
Algorithm Theory, WS 2017/18 Fabian Kuhn 40

Size of Trees

FREIBURG

T-0 Ty -
k=2 k
SO=1,51=2,Vk22:Sk22+ZSi, Fk+2—1+ZFi
i=0 =0

\

* Claimoflemma: S, = Fj.»
ld. s &

—_—

base Soa:F’z (S=1, ?F;_=|)/ S"/’F} (S,:z,‘“

_—

Blifi k=2 - o 2
S, 2 2 428; z) +‘_§:E,,z
=0 I=o
& —T
=2+>%
=2

Algorithm Theory, WS 2017/18 Fabian Kuhn

41

Size of Trees

UNI
f

FREIBURG

A
Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least [y, . ». o

—

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).

——

Proof:
= O
* The Fibonacci numbers grow exponentially: /

1 [(14+V5\ [1-+5
e (59 -9

 ForD(n) = k, we needn = Fj,,, nodes.

k

Algorithm Theory, WS 2017/18 Fabian Kuhn 42

Summary: Binomial and Fibonacci Heaps .
| I

Binarf/ Heap Fibonicci Heap
initialize 0(1) o(1)
insert O(logn) 0(1)
get-min 0(1) 0(1)
delete-min O(log n) O(logn) *
decrease-key O(logn) o(1)* }
merge O(m-logn) 0(1)
is-empty 0(1) 0(1)

Algorithm Theory, WS 2017/18

Fabian Kuhn

k . o
amortized time

43

UNI
FREIBURG

