

Chapter 5 Data Structures

Algorithm Theory WS 2017/18

Fabian Kuhn

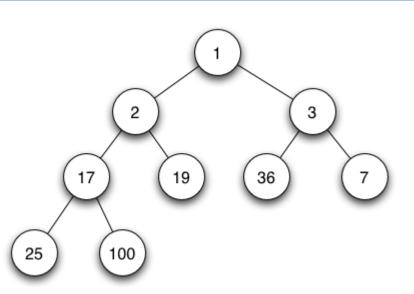
Priority Queue / Heap

- Stores (key,data) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- Insert(key,data): inserts (key,data)-pair, returns pointer to entry
- Get-Min: returns (key,data)-pair with minimum key
- Delete-Min: deletes minimum (key,data)-pair
- Decrease-Key(entry,newkey): decreases key of entry to newkey
- Merge: merges two heaps into one

Priority Queue Implementation

Implementation as min-heap:

- → complete binary tree,e.g., stored in an array
- Initialize-Heap: 0(1)
- Is-Empty: **0**(1)
- Insert: $O(\log n)$
- Get-Min: o(1)
- Delete-Min: $O(\log n)$
- Decrease-Key: O(log n)



• Merge (heaps of size m and $n, m \le n$): $O(m \log n)$

Can We Do Better?

Cost of Dijkstra with complete binary min-heap implementation:

$$O(|E|\log|V|)$$

- Binary heap:
 - insert, delete-min, and decrease-key cost $O(\log n)$ merging two heaps is expensive
- One of the operations insert or delete-min must cost $\Omega(\log n)$:
 - Heap-Sort:
 Insert n elements into heap, then take out the minimum n times
 - (Comparison-based) sorting costs at least $\Omega(n \log n)$.
- But maybe we can improve merge, decrease-key, and one of the other two operations?

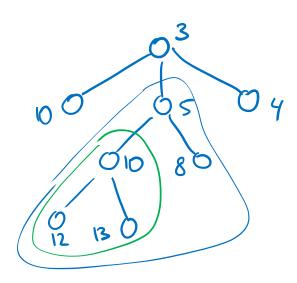
Fibonacci Heaps

Structure:

A Fibonacci heap *H* consists of a collection of trees satisfying the **min-heap** property.

Min-Heap Property:

Key of a node $v \le \text{keys}$ of all nodes in any sub-tree of v



Fibonacci Heaps

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the min-heap property.

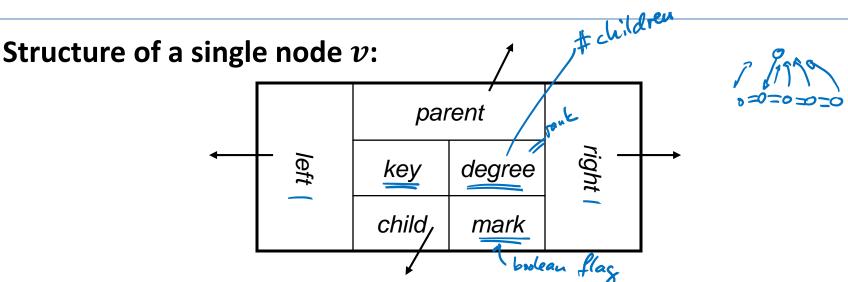
Variables:

- *H.min*: root of the tree containing the (a) minimum key
- *H.rootlist*: circular, doubly linked, unordered list containing the roots of all trees
- <u>H.size</u>: number of nodes currently in H

Lazy Merging:

- To reduce the number of trees, sometimes, trees need to be merged
- Lazy merging: Do not merge as long as possible...

Trees in Fibonacci Heaps



- v.child: points to circular, doubly linked and unordered list of the children of v
- v.left, v.right: pointers to siblings (in doubly linked list)
- v.mark: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

Example

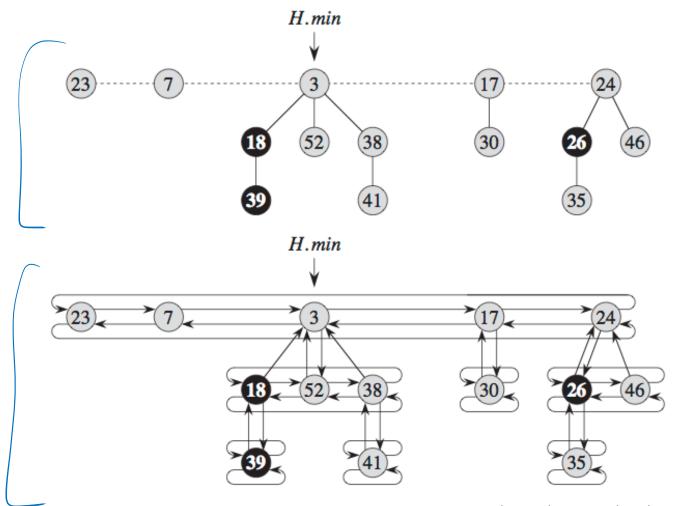


Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update H. min

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
 - mark of root node is set to false
- merge heaps H and H'

Get minimum element of *H*:

return H. min

Operation Delete-Min

Delete the node with minimum key from *H* and return its element:

- 1. $m \coloneqq H.min$;
- 2. if H.size > 0 then
- 3. remove H.min from H.rootlist;
- 4. add *H.min.child* (list) to *H.rootlist*
- 5. H.Consolidate();

// Repeatedly merge nodes with equal degree in the root list // until degrees of nodes in the root list are distinct. // Determine the element with minimum key

6. return m

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:

• rank(v): degree of v (number of children of v)

Tree T:

• rank(T): rank (degree) of root node of T

Heap H:

• rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):

$$rank(H) \leq D(n) = \mathcal{O}(\log n)$$

- for a known function D(n)

Merging Two Trees

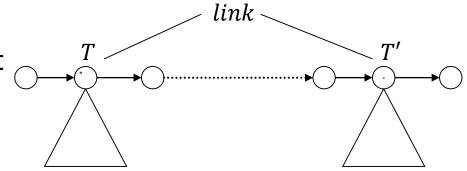
win-kegp 300.

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

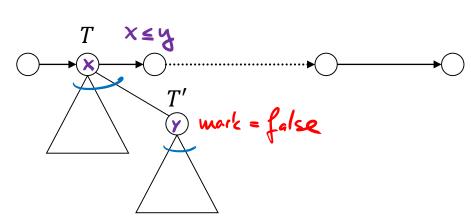
• Assume: min-key of $T < \min$ -key of T'

Operation link(T, T'):

• Removes tree T' from root list and adds T' to child list of T

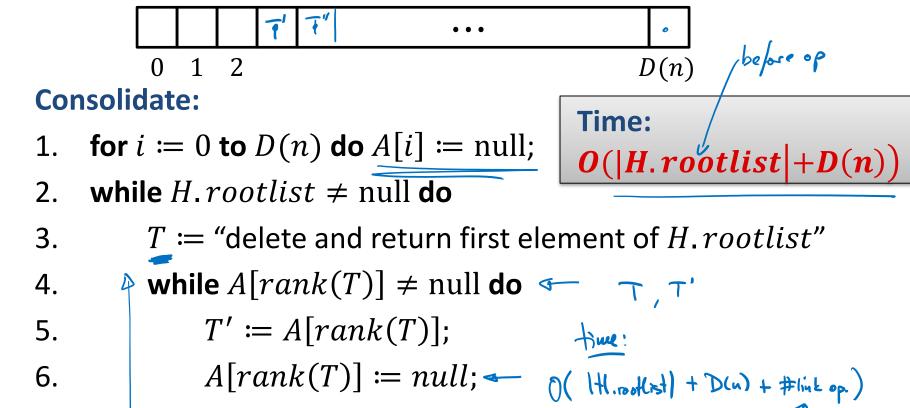


- rank(T) := rank(T) + 1
- (T'.mark = false)



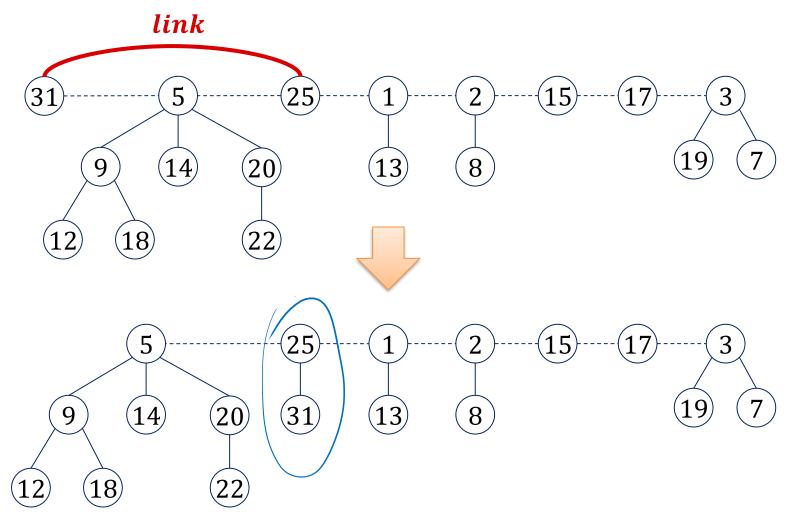
Consolidation of Root List

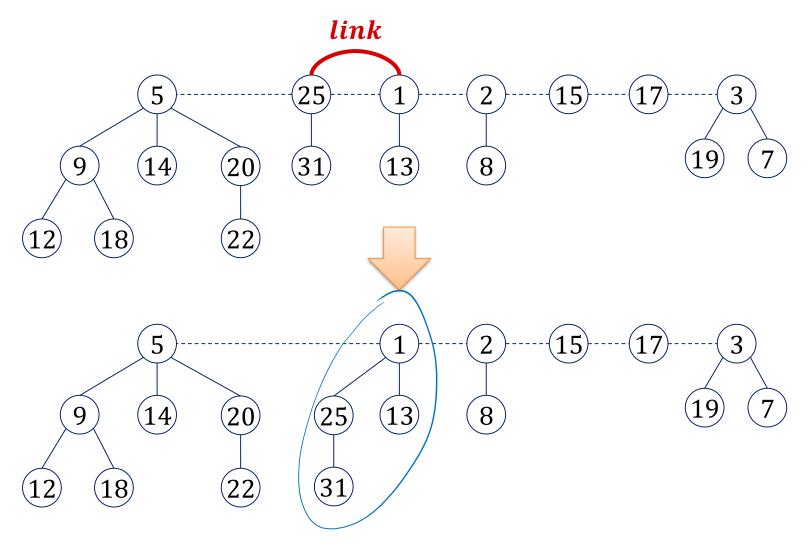
Array A pointing to find roots with the same rank:

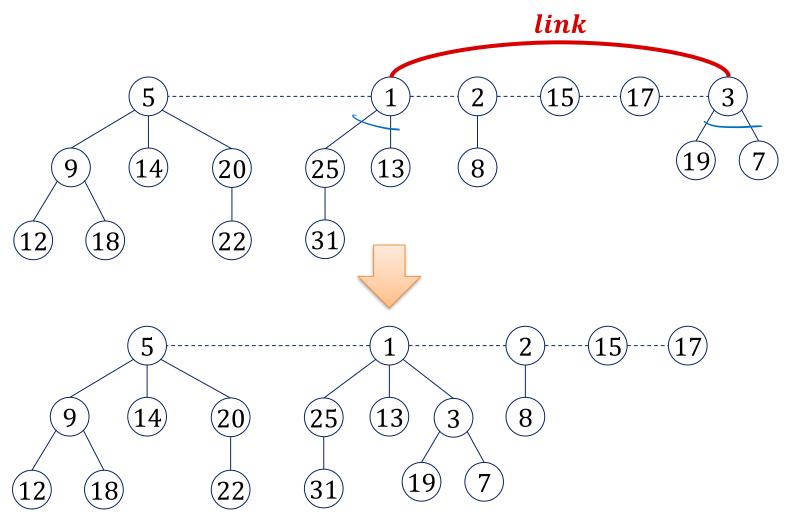


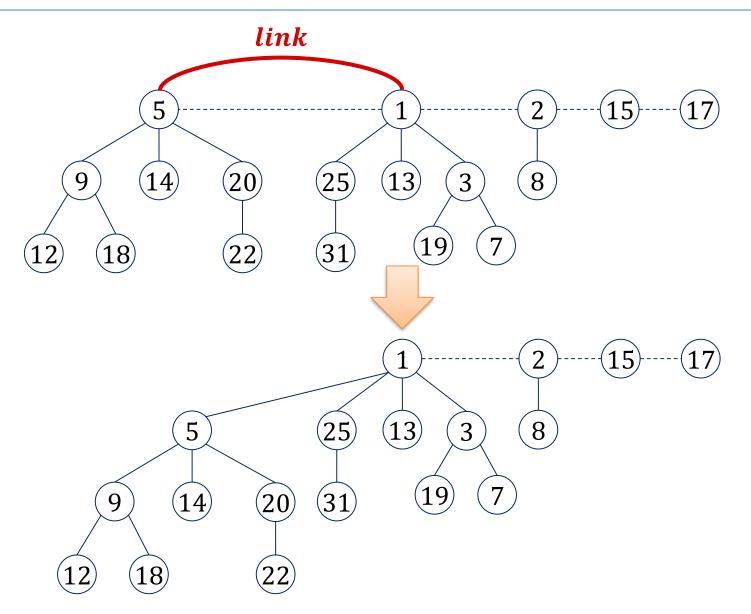
- 8. A[rank(T)] := T
- 9. Create new *H.rootlist* and *H.min*

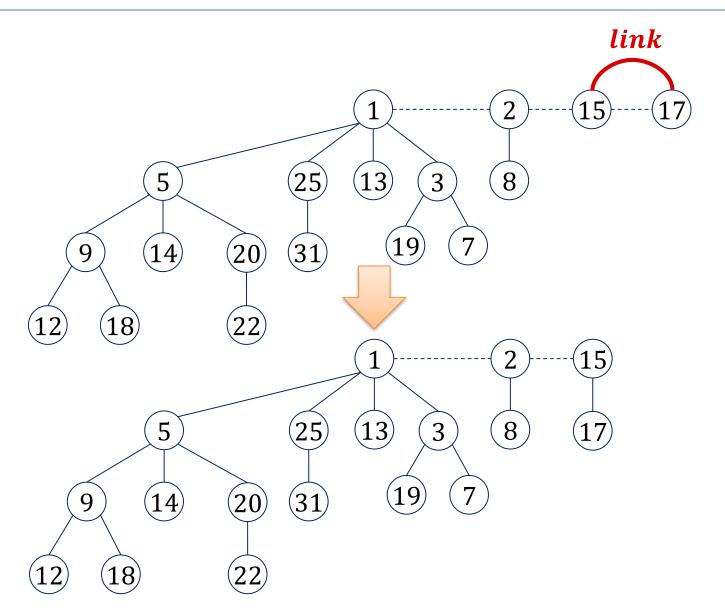
= [(f &) + (s)] - [

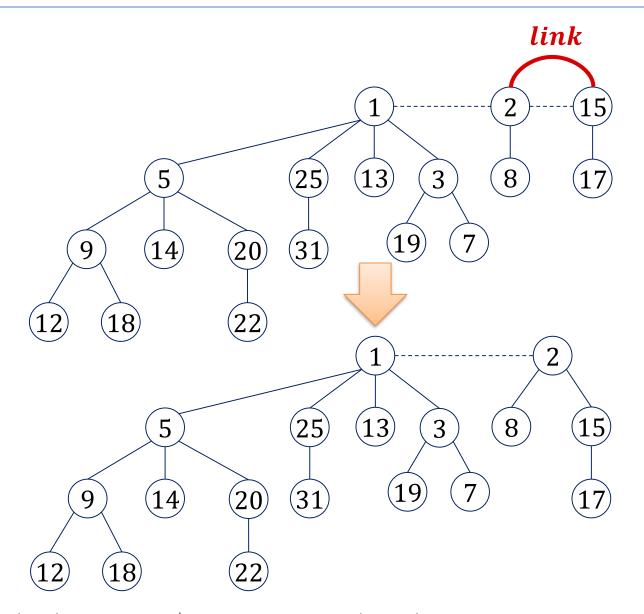












Operation Decrease-Key

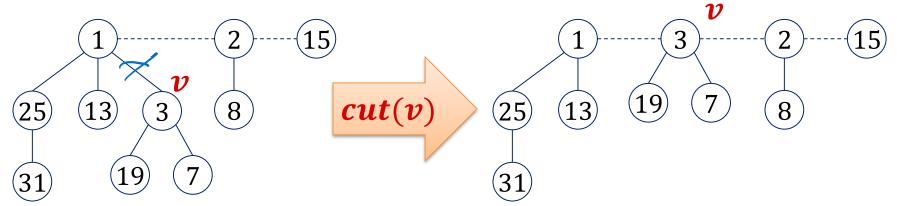
Decrease-Key(v, x): (decrease key of node v to new value x)

- 1. if $x \ge v$. key then return;
- 2. v.key := x; update H.min;
- 3. if $v \in H$.rootlist $\lor x \ge v$.parent.key then return
- 4. repeat
- 5. parent = v.parent;
- 6. H.cut(v);
- 7. $v \coloneqq parent;$
- 8. until $\neg (v.mark) \lor v \in H.rootlist;$
- 9. if $v \notin H.rootlist$ then v.mark := true;

Operation Cut(v)

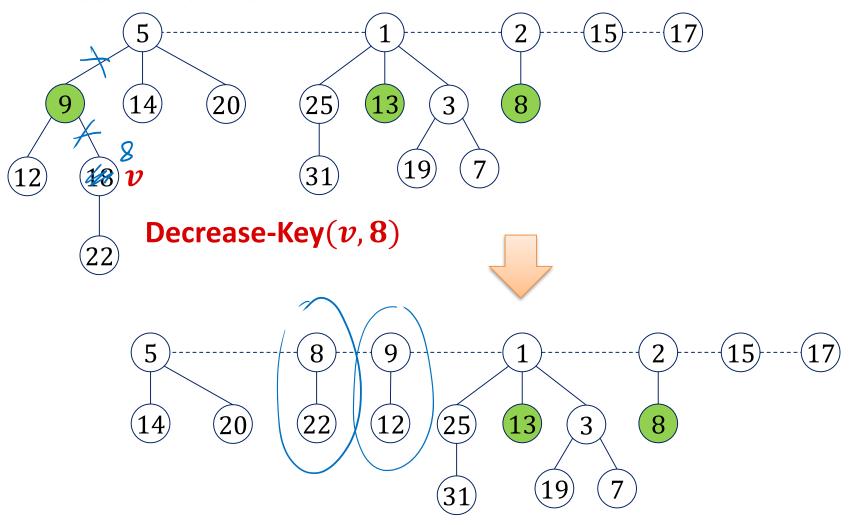
Operation H.cut(v):

- Cuts v's sub-tree from its parent and adds v to rootlist
- 1. if $v \notin H$, rootlist then
- 2. // cut the link between v and its parent
- 3. rank(v.parent) = rank(v.parent) 1;
- 4. remove v from v. parent. child (list)
- 5. v.parent = null;
- 6. add v to H.rootlist; v.mark := false;



Decrease-Key Example

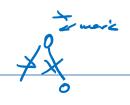
Green nodes are marked



Fibonacci Heaps Marks

- Nodes in the root list (the tree roots) are always unmarked
 - → If a node is added to the root list (insert, decrease-key), the mark of the node is set to false.
- Nodes not in the root list can only get marked when a subtree is cut in a decrease-key operation
- A node v is marked if and only if v is not in the root list and v has lost a child since v was attached to its current parent
 - a node can only change its parent by being moved to the root list

Fibonacci Heap Marks



History of a node v:

v is being linked to a node

v.mark = false

a child of v is cut

v.mark := true

a second child of v is cut

H.cut(v); v.mark := false

- Hence, the boolean value v.mark indicates whether node v has lost a child since the last time v was made the child of another node.
- Nodes v in the root list always have v. mark = false

Cost of Delete-Min & Decrease-Key

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1)
- 2. Consolidate H.rootlisttime: O(length of H.rootlist + D(n))
- Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node v time: O(1)
- Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in n

Exercises: Both operations can take $\Theta(n)$ time in the worst case!

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
 - Seems a large price to pay to get insert and merge in O(1) time
- Maybe, the operations are efficient most of the time?
 - It seems to require a lot of operations to get a long rootlist and thus,
 an expensive consolidate operation
 - In each decrease-key operation, at most one node gets marked:
 We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?
- We can → requires amortized analysis

Fibonacci Heaps Complexity

- Worst-case cost of a single delete-min or decrease-key operation is $\Omega(n)$
- Can we prove a small worst-case amortized cost for delete-min and decrease-key operations?

Recall:

- Data structure that allows operations O_1 , ..., O_k
- We say that operation $\underline{O_p}$ has amortized cost $\underline{a_p}$ if for every execution the total time is

$$T \leq \sum_{p=1}^{k} n_p \cdot a_p ,$$

where n_p is the number of operations of type \mathcal{O}_p

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case cost O(1) and amorbied cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost O(1)
- Starting with an empty heap, any sequence of \underline{n} operations with at most $\underline{n_d}$ delete-min operations has total cost (time)

$$T = O(\underline{n} + n_d \log n).$$

We will now need the marks...

• Cost for Dijkstra: $O(|E| + |V| \log |V|)$

Fibonacci Heaps: Marks

Cycle of a node:

1. Node v is removed from root list and linked to a node

```
v.mark = false
```

2. Child node u of v is cut and added to root list

```
v.mark = true
```

3. Second child of v is cut

```
node v is cut as well and moved to root list v.mark := false
```

The boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function R= (*Low-HOSH)

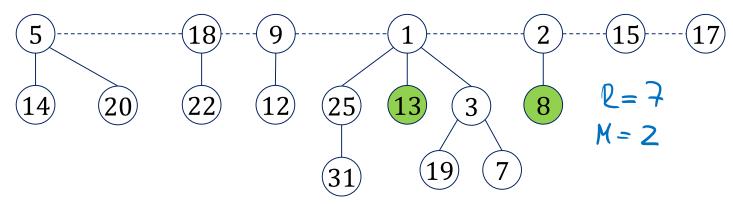
System state characterized by two parameters:

- **R**: number of trees (length of *H*. rootlist)
- D= R+M
- M: number of marked nodes (not in the root list)

Potential function:

$$\Phi \coloneqq R + 2M$$

Example:



•
$$R = 7, M = 2 \rightarrow \Phi = 11$$

Actual Time of Operations

• Operations: *initialize-heap, is-empty, insert, get-min, merge*

```
actual time: O(1)
```

Normalize unit time such that

$$t_{init}$$
, $t_{is-empty}$, t_{insert} , $t_{get-min}$, $t_{merge} \leq 1$

- Operation delete-min:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

$$t_{del-min} \le D(n) + \text{length of } H.rootlist = \mathbb{N}_n + \mathbb{R}_n$$

- Operation descrease-key:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

 $t_{decr-key} \leq \text{length of path to next unmarked ancestor}$

Amortized Times

Assume operation i is of type:

initialize-heap:

- actual time: $t_i \leq 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

is-empty, get-min:

- actual time: $t_i \leq 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

merge:

- − Actual time: $t_i \le 1$
- combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

Amortized Time of Insert

Assume that operation i is an *insert* operation:

• Actual time: $t_i \leq 1$

Potential function:

- M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
- -R grows by 1 (one element is added to the root list)

$$M_i = M_{i-1}, \qquad R_i = R_{i-1} + 1$$

 $\Phi_i = \Phi_{i-1} + 1$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq 2$$

Amortized Time of Delete-Min

Assume that operation i is a *delete-min* operation:

Actual time: $t_i \leq \underline{D(n)} + |H.rootlist|$

Potential function $\Phi = R + 2M$:

- R: changes from |H.rootlist| to at most D(n) + 1
- M: (# of marked nodes that are not in the root list)
 - Number of marks does not ingrease change

$$M_i = M_{i-1}, \quad R_i \le R_{i-1} + D(n) + 1 - |H.rootlist|$$

 $\Phi_i \le \Phi_{i-1} + D(n) + 1 - |H.rootlist|$

Amortized Time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq 2D(n) + 1$$

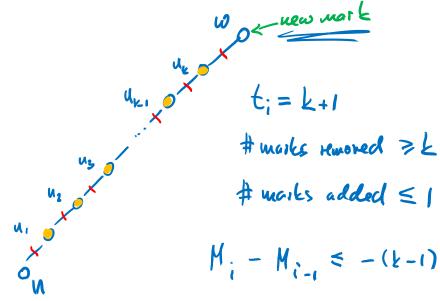
Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, \dots, u_k$ are marked and moved to root list, v. mark is set to true



Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, ..., u_k$ are marked and moved to root list, v. mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k+1$, M grows by 1 and is decreased by $\geq k$

$$R_i \le R_{i-1} + k + 1, \qquad M_i \le M_{i-1} + 1 - k$$

 $\Phi_i \le \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq \underbrace{k+1}_{t_i} + \underbrace{3-k}_{t_i} = \underbrace{4}_{t_i}$$

Complexities Fibonacci Heap

Initialize-Heap: 0(1)

• Is-Empty: O(1)

• Insert: O(1)

• Get-Min: O(1)

• Delete-Min: O(D(n)) \longrightarrow amortized

• Decrease-Key: O(1)

• Merge (heaps of size m and $n, m \le n$): O(1)

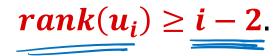
• How large can D(n) get?

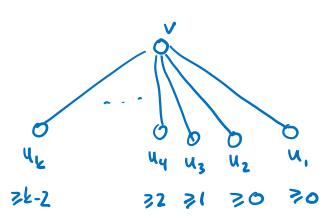
Rank of Children

Lemma:

Consider a node v of rank k and let u_1, \dots, u_k be the children of v in the order in which they were linked to v. Then,

Proof:







Fibonacci Numbers:

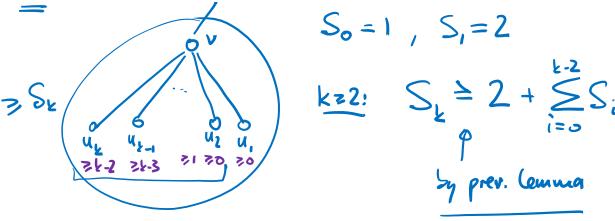
$$F_0 = 0$$
, $F_1 = 1$, $\forall k \ge 2$: $F_k = F_{k-1} + F_{k-2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Proof:

• S_k : minimum size of the sub-tree of a node of rank k



$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2 : S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\frac{k = 0:}{k \geq 0:} \ \ F_{z} = 1 + F_{0} = F_{i} + F_{0}$$

$$\frac{k \geq 0:}{k \geq 0:} \ \ F_{z} = 1 + F_{0} = F_{i} + F_{i}$$

$$\frac{F_{k+1}}{F_{k+1}} = \frac{F_{k}}{F_{i}} + \frac{F_{k+1}}{F_{i}} = \frac{F_{k}}{F_{i}}$$

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k-2} S_i$$

$$F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

• Claim of lemma: $S_k \ge F_{k+2}$

base:
$$S_0 \ge T_2$$
 ($S_0 = 1$, $T_2 = 1$) / $S_1 \ge T_3$ ($S_1 = 2$, $T_3 = 2$) / $S_1 \ge T_3$ ($S_1 = 2$, $T_3 = 2$) / $S_1 \ge T_3$ ($S_1 = 2$, $T_3 = 2$) / $S_1 \ge T_3$ ($S_1 = 2$, $T_3 = 2$) / $S_2 \ge 2 + \sum_{i=0}^{k-2} S_i \ge 2 + \sum_{i=0}^{k-2} T_{i+2}$ = $2 + \sum_{j=2}^{k} T_j$ = $1 + \sum_{j=2}^{k} T_j = T_{k+2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$D(n) = O(\log n).$$

Proof:

The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Summary: Binomial and Fibonacci Heaps

	V	₹
	Binary Heap	Fibonacci Heap
initialize	O (1)	0 (1)
insert	$O(\log n)$	O (1)
get-min	O (1)	O (1)
delete-min	$O(\log n)$	$O(\log n)$ *
decrease-key	$O(\log n)$	0 (1) *
merge	$O(m \cdot \log n)$	0(1)
is-empty	0(1)	0(1)

^{*} amortized time