

Chapter 5 Data Structures

Algorithm Theory WS 2017/18

Fabian Kuhn

Summary: Binary and Fibonacci Heaps

	Binary Heap	Fibonacci Heap
initialize	0(1)	0 (1)
insert	$O(\log n)$	O (1)
get-min	O (1)	0 (1)
delete-min	$O(\log n)$	$O(\log n)$ *
decrease-key	$O(\log n)$	O (1) *
merge	$O(m \cdot \log n)$	0(1)
is-empty	0(1)	0(1)

^{*} amortized time

Minimum Spanning Trees

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step: Grow the current component by adding the minimum weight edge e connecting the current component with any other node

Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $s \ge v$ are unmarked

3. Get unmarked node u which minimizes d(u):

4. For all $e = \{u, v\} \in E$, $d(v) = \min\{d(v), w(e)\}$

5. mark node u

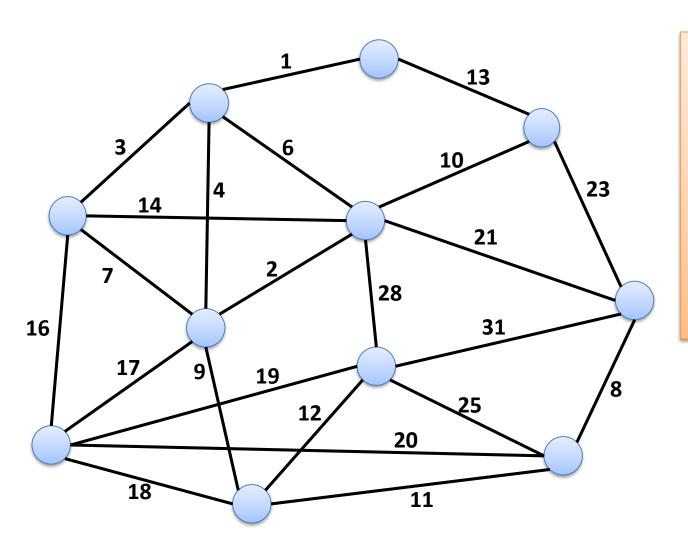
6. Until all nodes are marked

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

- Analysis identical to the analysis of Dijkstra's algorithm:
 - O(n) insert and delete-min operations
 - O(m) decrease-key operations
- Running time: $O(m + n \log n)$

Kruskal Algorithm



- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge *e*:

if e does not close a cycle then

add e to the current solution

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets

Operations:

- make_set(x): create a new set that only contains element x
- find(x): return the set containing x
- union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

if $find(u) \neq find(v)$ then

add e to the current solution

union(u, v)

Managing Connected Components

- Union-find data structure can be used more generally to manage the connected components of a graph
 - ... if edges are added incrementally
- $make_set(v)$ for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

 Every set S of the partition is identified with a representative, by one of its members x ∈ S

Operations:

- $make_set(x)$: x is the representative of the new set $\{x\}$
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find:

- n: total number of make_set operations
- m: total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$
- There are at most n-1 union operations

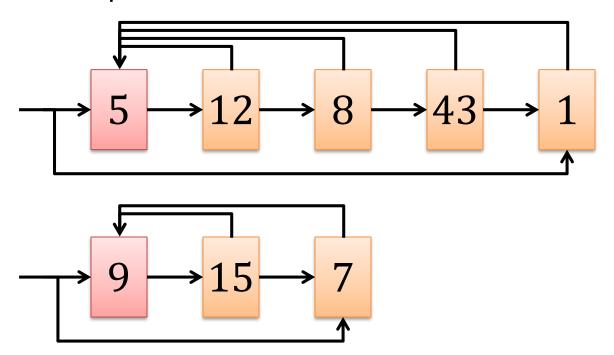
Remark:

- We assume that the n make_set operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element



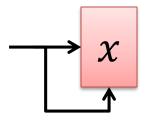
• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5, 9

Linked List Implementation

$make_set(x)$:

Create list with one element:

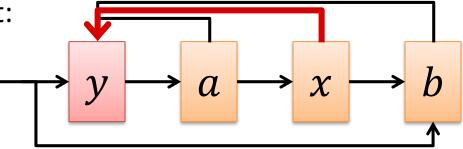
time: O(1)



find(x):

Return first list element:

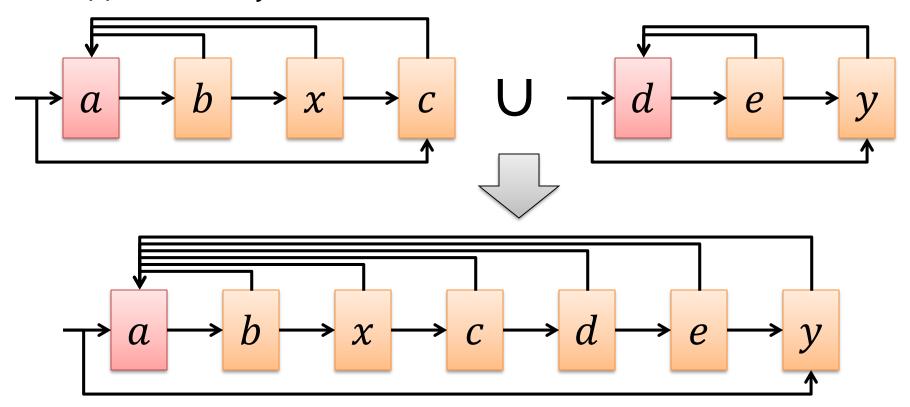
time: O(1)



Linked List Implementation

union(x, y):

Append list of y to list of x:



Time: O(length of list of y)

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

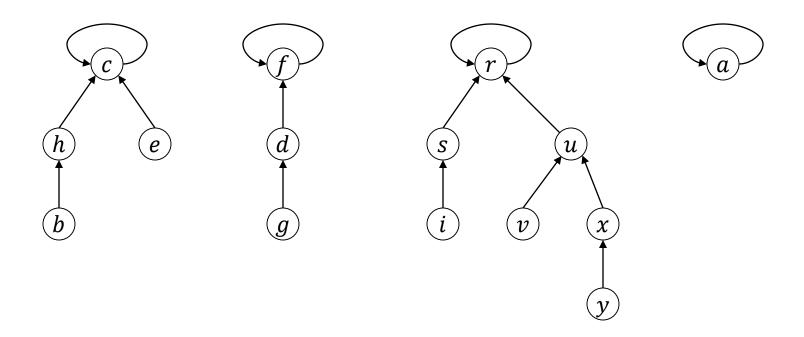
Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Weighted-Union Heuristic

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Proof:

Disjoint-Set Forests

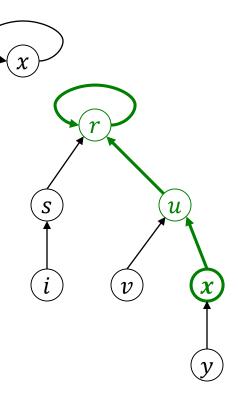


- Represent each set by a tree
- Representative of a set is the root of the tree

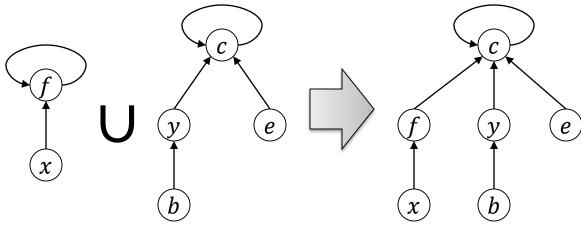
Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)



union(x, y): attach tree of x to tree of y



Algorithm Theory, WS 2017/18

Fabian Kuhn

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)

Union-By-Size Heuristic

Union of sets S_1 and S_2 :

- Root of trees representing S_1 and S_2 : r_1 and r_2
- W.I.o.g., assume that $|S_1| \ge |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $O(\log n)$

Proof:

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

• make_set: worst-case cost O(1)

• find : worst-case cost O(1)

• union : amortized worst-case cost $O(\log n)$

Disjoint-Set Forest with Union-By-Size Heuristic:

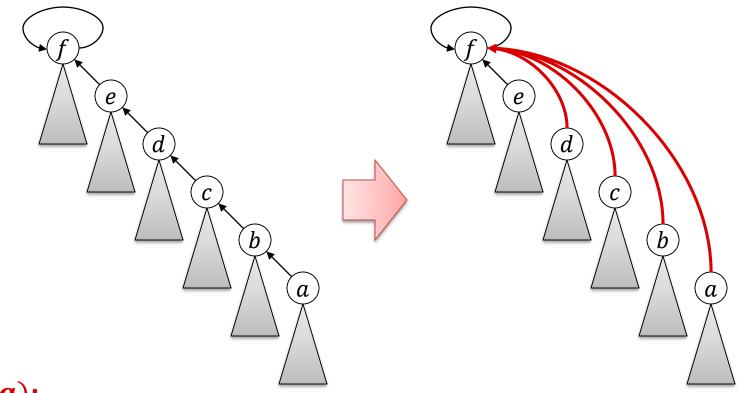
• make_set: worst-case cost O(1)

• find : worst-case cost $O(\log n)$

• union : worst-case cost $O(\log n)$

Can we make this faster?

Path Compression During Find Operation



find(a):

- 1. **if** $a \neq a$. *parent* **then**
- 2. a.parent := find(a.parent)
- 3. **return** *a.parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

m: total number of operations

- *f* of which are find-operations
- n of which are make_set-operations
 - \rightarrow at most n-1 are union-operations

Total cost:
$$O\left(m + f \cdot \left\lceil \log_{2+f/n} n \right\rceil \right) = O\left(m + f \cdot \log_{2+m/n} n \right)$$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of m disjoint-set (union-find) operations on n elements (at most n make_set-operations) is

$$\Theta(m \cdot \alpha(m,n)),$$

Where $\alpha(m,n)$ is the inverse of the Ackermann function.

Ackermann Function and its Inverse

Ackermann Function:

For
$$k,\ell\geq 1$$
,
$$A(k,\ell)\coloneqq \begin{cases} 2^\ell, & \text{if } k=1,\ell\geq 1\\ A(k-1,2), & \text{if } k>1,\ell=1\\ A(k-1,A(k,\ell-1)), & \text{if } k>1,\ell>1 \end{cases}$$

Inverse of Ackermann Function:

$$\alpha(m,n) := \min\{k \ge 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$$

Inverse of Ackermann Function

- $\alpha(m,n) := \min\{k \ge 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$ $m \ge n \Rightarrow A(k,\lfloor m/n \rfloor) \ge A(k,1) \Rightarrow \alpha(m,n) \le \min\{k \ge 1 \mid A(k,1) > \log n\}$
- $A(1,\ell) = 2^{\ell}$, A(k,1) = A(k-1,2), $A(k,\ell) = A(k-1,A(k,\ell-1))$