
Chapter 5

Data Structures

Algorithm Theory
WS 2017/18

Fabian Kuhn

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Summary: Binary and Fibonacci Heaps

Binary Heap Fibonacci Heap

initialize 𝑶(𝟏) 𝑶(𝟏)

insert 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝟏)

get-min 𝑶(𝟏) 𝑶(𝟏)

delete-min 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝐥𝐨𝐠 𝒏) *

decrease-key 𝑶 𝐥𝐨𝐠 𝒏 𝑶(𝟏) *

merge 𝑶(𝒎 ⋅ 𝐥𝐨𝐠 𝒏) 𝑶(𝟏)

is-empty 𝑶(𝟏) 𝑶(𝟏)

∗ amortized time

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Minimum Spanning Trees

Prim Algorithm:

1. Start with any node 𝑣 (𝑣 is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge 𝑒 connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge 𝑒 such that 𝑒 does not close a cycle

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Implementation of Prim Algorithm

Start at node 𝒔, very similar to Dijkstra’s algorithm:

1. Initialize 𝑑 𝑠 = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑠 ≥ 𝑣 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑢):

4. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑣 = min 𝑑 𝑣 ,𝑤 𝑒

5. mark node 𝑢

6. Until all nodes are marked

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

• Analysis identical to the analysis of Dijkstra’s algorithm:

𝑂(𝑛) insert and delete-min operations

𝑂(𝑚) decrease-key operations

• Running time: 𝑶(𝒎+ 𝒏 𝐥𝐨𝐠𝒏)

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Kruskal Algorithm

3

14
4

6

1

10

13

23

21

31

8
25

20

1118

17

16

199

12

7 2
28

1. Start with an
empty edge set

2. In each step:
Add minimum
weight edge 𝑒
such that 𝑒 does
not close a cycle

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge 𝑒:

if 𝒆 does not close a cycle then

add 𝒆 to the current solution

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Union-Find Data Structure

Also known as Disjoint-Set Data Structure…

Manages partition of a set of elements

• set of disjoint sets

Operations:

• 𝐦𝐚𝐤𝐞_𝐬𝐞𝐭(𝒙): create a new set that only contains element 𝑥

• 𝐟𝐢𝐧𝐝(𝒙): return the set containing 𝑥

• 𝐮𝐧𝐢𝐨𝐧(𝒙, 𝒚): merge the two sets containing 𝑥 and 𝑦

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Implementation of Kruskal Algorithm

1. Initialization:
For each node 𝑣: make_set(𝑣)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. For each edge 𝑒 = {𝑢, 𝑣}:

if 𝐟𝐢𝐧𝐝 𝒖 ≠ 𝐟𝐢𝐧𝐝(𝒗) then

add 𝑒 to the current solution

𝐮𝐧𝐢𝐨𝐧(𝒖, 𝒗)

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Managing Connected Components

• Union-find data structure can be used more generally to manage
the connected components of a graph

… if edges are added incrementally

• make_set(𝑣) for every node 𝑣

• find(𝑣) returns component containing 𝑣

• union(𝑢, 𝑣) merges the components of 𝑢 and 𝑣
(when an edge is added between the components)

• Can also be used to manage biconnected components

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Basic Implementation Properties

Representation of sets:

• Every set 𝑆 of the partition is identified with a representative,
by one of its members 𝑥 ∈ 𝑆

Operations:

• make_set(𝑥): 𝑥 is the representative of the new set {𝑥}

• find(𝑥): return representative of set 𝑆𝑥 containing 𝑥

• union(𝑥, 𝑦): unites the sets 𝑆𝑥 and 𝑆𝑦 containing 𝑥 and 𝑦 and

returns the new representative of 𝑆𝑥 ∪ 𝑆𝑦

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Observations

Throughout the discussion of union-find:

• 𝑛: total number of make_set operations

• 𝑚: total number of operations (make_set, find, and union)

Clearly:

• 𝑚 ≥ 𝑛

• There are at most 𝑛 − 1 union operations

Remark:

• We assume that the 𝑛 make_set operations are the first 𝑛
operations
– Does not really matter…

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Linked List Implementation

Each set is implemented as a linked list:

• representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

• sets: 1,5,8,12,43 , 7,9,15 ; representatives: 5, 9

5 12 8 43 1

9 15 7

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Linked List Implementation

𝐦𝐚𝐤𝐞_𝐬𝐞𝐭(𝒙):

• Create list with one element:

time: 𝑶 𝟏

𝐟𝐢𝐧𝐝(𝒙):

• Return first list element:

time: 𝑶(𝟏)

𝑥

𝑦 𝑎 𝑥 𝑏

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Linked List Implementation

𝐮𝐧𝐢𝐨𝐧(𝒙, 𝒚):

• Append list of 𝑦 to list of 𝑥:

Time: 𝑶 𝐥𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐥𝐢𝐬𝐭 𝐨𝐟 𝒚

𝑎 𝑏 𝑥 𝑐 𝑑 𝑒 𝑦∪

𝑎 𝑏 𝑥 𝑐 𝑑 𝑒 𝑦

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

Cost of Union (Linked List Implementation)

Total cost for 𝑛 − 1 union operations can be Θ(𝑛2):

• make_set 𝑥1 , make_set 𝑥2 , … ,make_set(𝑥𝑛),
union 𝑥𝑛−1, 𝑥𝑛 , union 𝑥𝑛−2, 𝑥𝑛−1 , … , union 𝑥1, 𝑥2

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Weighted-Union Heuristic

• In a bad execution, average cost per union can be Θ(𝑛)

• Problem: The longer list is always appended to the shorter one

Idea:

• In each union operation, append shorter list to longer one!

Cost for union of sets 𝑆𝑥 and 𝑆𝑦: 𝑂 min 𝑆𝑥 , 𝑆𝑦

Theorem: The overall cost of 𝑚 operations of which at most 𝑛 are
make_set operations is 𝑶(𝒎+ 𝒏 𝐥𝐨𝐠𝒏).

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Weighted-Union Heuristic

Theorem: The overall cost of 𝑚 operations of which at most 𝑛
are make_set operations is 𝑶(𝒎+ 𝒏 𝐥𝐨𝐠𝒏).

Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

• Represent each set by a tree

• Representative of a set is the root of the tree

𝑐

Disjoint-Set Forests

ℎ 𝑒

𝑏

𝑓

𝑑

𝑔

𝑟

𝑠

𝑖 𝑥

𝑦

𝑢

𝑣

𝑎

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Disjoint-Set Forests

𝐦𝐚𝐤𝐞_𝐬𝐞𝐭(𝐱): create new one-node tree

𝐟𝐢𝐧𝐝(𝒙): follow parent point to root
(parent pointer to itself)

𝐮𝐧𝐢𝐨𝐧(𝒙, 𝒚): attach tree of 𝑥 to tree of 𝑦

𝑥

𝑟

𝑠

𝑖 𝒙

𝑦

𝑢

𝑣

𝑓

𝑥

𝑐

𝑦 𝑒

𝑏

∪ 𝑓

𝑥

𝑐

𝑦 𝑒

𝑏

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Bad Sequence

Bad sequence leads to tree(s) of depth Θ(𝑛)

• make_set 𝑥1 , make_set 𝑥2 , … ,make_set(𝑥𝑛),
union 𝑥1, 𝑥2 , union 𝑥1, 𝑥3 , … , union 𝑥1, 𝑥𝑛

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Union-By-Size Heuristic

Union of sets 𝑺𝟏 and 𝑺𝟐:

• Root of trees representing 𝑆1 and 𝑆2: 𝑟1 and 𝑟2
• W.l.o.g., assume that 𝑆1 ≥ |𝑆2|

• Root of 𝑆1 ∪ 𝑆2: 𝑟1 (𝑟2 is attached to 𝑟1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case
cost of a 𝐟𝐢𝐧𝐝-operation is 𝑶(𝐥𝐨𝐠𝒏)

Proof:

Similar Strategy: union-by-rank

• rank: essentially the depth of a tree

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Union-Find Algorithms

Recall: 𝑚 operations, 𝑛 of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

• make_set: worst-case cost 𝑂 1

• find : worst-case cost 𝑂(1)

• union : amortized worst-case cost 𝑂(log 𝑛)

Disjoint-Set Forest with Union-By-Size Heuristic:

• make_set: worst-case cost 𝑂 1

• find : worst-case cost 𝑂(log 𝑛)

• union : worst-case cost 𝑂(log 𝑛)

Can we make this faster?

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Path Compression During Find Operation

𝐟𝐢𝐧𝐝(𝒂):

1. if 𝑎 ≠ 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡 then

2. 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ find 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡

3. return 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡

𝑓

𝑒

𝑑

𝑐

𝑏

𝑎

𝑓

𝑒

𝑑

𝑐

𝑏

𝑎

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Complexity With Path Compression

When using only path compression (without union-by-rank):

𝑚: total number of operations

• 𝑓 of which are find-operations

• 𝑛 of which are make_set-operations
 at most 𝑛 − 1 are union-operations

Total cost: 𝐎 𝒎+ 𝒇 ⋅ 𝐥𝐨𝐠
𝟐+ ൗ𝒇 𝒏

𝒏 = 𝑶 𝒎+ 𝒇 ⋅ 𝐥𝐨𝐠𝟐+ Τ𝒎 𝒏
𝒏

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression
heuristic, the running time of 𝑚 disjoint-set (union-find)
operations on 𝑛 elements (at most 𝑛 make_set-operations) is

𝚯 𝒎 ⋅ 𝜶 𝒎,𝒏 ,

Where 𝛼 𝑚, 𝑛 is the inverse of the Ackermann function.

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Ackermann Function and its Inverse

Ackermann Function:

For 𝑘, ℓ ≥ 1,

𝑨 𝒌, ℓ ≔ ൞

𝟐ℓ, 𝐢𝐟 𝒌 = 𝟏, ℓ ≥ 𝟏
𝑨 𝒌 − 𝟏, 𝟐 , 𝐢𝐟 𝒌 > 𝟏, ℓ = 𝟏

𝑨 𝒌 − 𝟏,𝑨 𝒌, ℓ − 𝟏 , 𝐢𝐟 𝒌 > 𝟏, ℓ > 𝟏

Inverse of Ackermann Function:

𝜶 𝒎,𝒏 ≔ 𝐦𝐢𝐧 𝒌 ≥ 𝟏 | 𝑨 𝒌, Τ𝒎 𝒏 > 𝐥𝐨𝐠𝟐 𝒏

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Inverse of Ackermann Function

• 𝛼 𝑚, 𝑛 ≔ min 𝑘 ≥ 1 | 𝐴 𝑘, Τ𝑚 𝑛 > log2 𝑛

𝑚 ≥ 𝑛 ⟹ 𝐴 𝑘, Τ𝑚 𝑛 ≥ 𝐴 𝑘, 1 ⟹ 𝛼 𝑚, 𝑛 ≤ min 𝑘 ≥ 1|𝐴 𝑘, 1 > log 𝑛

• 𝐴 1, ℓ = 2ℓ, 𝐴 𝑘, 1 = 𝐴(𝑘 − 1,2),

𝐴 𝑘, ℓ = 𝐴 𝑘 − 1, 𝐴 𝑘, ℓ − 1

