$11 F$

Chapter 5
 Data Structures

Summary: Binary and Fibonacci Heaps

	Binary Heap	Fibonacci Heap
initialize	$\boldsymbol{O}(\mathbf{1})$	$\boldsymbol{O}(\mathbf{1})$
insert	$\boldsymbol{O}(\log n)$	$\boldsymbol{O}(\mathbf{1})$
get-min	$\boldsymbol{O}(\mathbf{1})$	$\boldsymbol{O}(\mathbf{1})$
delete-min	$\boldsymbol{O}(\log n)$	$\boldsymbol{O}(\log n)^{*}$
decrease-key	$\boldsymbol{O}(\log n)$	$\boldsymbol{O}(1){ }^{*}$
merge	$\boldsymbol{O}(\boldsymbol{m} \cdot \log n)$	$\boldsymbol{O}(\mathbf{1})$
is-empty	$\boldsymbol{O}(\mathbf{1})$	$\boldsymbol{O}(\mathbf{1})$

$$
\text { Dijkscra: } O(I E I+N|\log | V I)
$$

* amortized time

Minimum Spanning Trees

Prim Algorithm:

(S)

1. Start with any node v (v is the initial component)
2. In each step:

Grow the current component by adding the minimum weight edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set
2. In each step:

Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

1. Initialize $d(s)=0$ and $d(v)=\infty$ for all $v \neq s$
2. All nodes $s \geq v$ are unmarked

$$
\text { ald all nodes to an empty privity queue } Q \quad(d(v) \text { : key })
$$

3. Get unmarked node u which minimizes $d(u)$:

$$
\text { get -min } \longrightarrow u
$$

4. γ For all $e=\{u, v\} \in E, d(v)=\min \{d(v), w(e)\}$

$$
\text { potentially update } d(w) \text { for all neighbors of } u
$$

5. mark node u
delete-min
6. Until all nodes are marked

Implementation of Prim Algorithm

Implementation with Fibonacci heap:
u nodes
un edyes

- Analysis identical to the analysis of Dijkstra's algorithm:
$O(n)$ insert and delete-min operations
$O(m)$ decrease-key operations
- Running time: $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n} \log \boldsymbol{n})$

1. Start with an empty edge set
2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights
sort edges by weight
$O(m \log n)$
(it weights are nice, this might be faster)
2. For each edge e :

$$
(e=\{u, v\})
$$

if e does not close a cycle then
need to be able to check whither e closes a cycle

$$
\Longleftrightarrow
$$

check whether u \& v are in the same cow ponent add e to the current solution add $\{u, v\}$ need to merge components of $u k v$

Union-Find Data Structure

Also known as Disjoint-Set Data Structure...
Manages partition of a set of elements

- set of disjoint sets

(6

Operations:

- make_set (x) : create a new set that only contains element x
- find (x) : return the set containing x
- union (x, y) : merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v : make_set (v)
2. Go through edges in order of increasing weights: Sort edges by edge weight
3. For each edge $e=\{u, v\}$:
if $\operatorname{find}(u) \neq \operatorname{find}(v)$ then
add e to the current solution
union (u, v)

Managing Connected Components

- Union-find data structure can be used more generally to manage the connected components of a graph
... if edges are added incrementally
- make_set (v) for every node v
- find (v) returns component containing v
- union (u, v) merges the components of u and v
(when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

- Every set S of the partition is identified with a representative, by one of its members $x \in S$

Operations:

- make_set $(x): x$ is the representative of the new set $\{x\}$
- find (x) : return representative of set S_{x} containing x
- union (x, y) : unites the sets S_{x} and S_{y} containing x and y and returns the new representative of $S_{x} \cup S_{y}$

Observations

Throughout the discussion of union-find: $f: \#$ fird ops

- \underline{n} : total number of make_set operations
- \underline{m} : total number of operations (make_set, find, and union)

Clearly:

- $m \geq n \quad$ (exactly n malce-set ops)
- There are at most $n-1$ union operations

Remark:

- We assume that the n make_set operations are the first n operations
- Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

- representative: first list element (all nodes point to first elem.) in addition: pointer to first and last element malees find cheap

- sets: $\{1,5,8,12,43\},\{7,9,15\}$; representatives: 5,9

Linked List Implementation

make_set (x) :

- Create list with one element: time: $\boldsymbol{O}(\mathbf{1})$

find (x) :
- Return first list element: time: \boldsymbol{O} (1)

Linked List Implementation

union (x, y) :

- Append list of y to list of x :

Time: \boldsymbol{O} (length of list of \boldsymbol{y})

Cost of Union (Linked List Implementation)
Total cost for $n-1$ union operations can be $\Theta\left(n^{2}\right)$:

- make_set $\left(x_{1}\right)$, make_set $\left(x_{2}\right), \ldots$, make_set $\left(x_{n}\right)$, union $\left(x_{n-1}, x_{n}\right)$, union $\left(x_{n-2}, x_{n-1}\right), \ldots, \operatorname{union}\left(x_{1}, x_{2}\right)$

$$
x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad \cdots \cdots \quad x_{n-3} \rightarrow x_{n-2} \rightarrow x_{n-1} \rightarrow x_{n}
$$

\#pointer redis. : $1+2+3+\ldots=\theta\left(n^{2}\right)$
\Longrightarrow arg. cosS per union: $\theta(n)$

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

- In each union operation, append shorter list to longer one!

Cost for union of sets S_{x} and $S_{y}: O\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)$

Theorem: The overall cost of \underline{m} operations of which at most n are make_set operations is $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n} \log n)$.

Weighted-Union Heuristic
Theorem: The overall cost of m operations of which at most n are make_set operations is $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n} \log \boldsymbol{n})$.

Proof:
total cost of make-set \& find operations: $O(m)$
need to bound total cost of the union operations
= \#pointer redirections
consider a fired element x
How often do we need to redirect
the repr.pointer of x

Size of the setcontaining ${ }^{*}$ at lease doubles

$$
\Longrightarrow \leq \log _{2} n \text { redis. }
$$

$$
\text { of repre pointer of } x
$$

Kruskal's MST ald.
Sorting: $O(m \log n)$
union-find part

$$
O(m+n \log n)
$$

Disjoint-Set Forests

- Represent each set by a tree
- Representative of a set is the root of the tree

Disjoint-Set Forests

make_set(x): create new one-node tree

find (x) : follow parent point to root (parent pointer to itself)

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

- make_set $\left(x_{1}\right)$, make_set $\left(x_{2}\right), \ldots, \operatorname{make} \operatorname{set}\left(x_{n}\right)$, union $\left(x_{1}, x_{2}\right)$, union $\left(x_{1}, x_{3}\right), \ldots, \operatorname{union}\left(x_{1}, x_{n}\right)$

Union-By-Size Heuristic

Union of sets S_{1} and S_{2} :

- Root of trees representing S_{1} and $S_{2}: \underline{r_{1}}$ and $\underline{r_{2}}$
- W.l.o.g., assume that $\left|S_{1}\right| \geq\left|S_{2}\right|$
- Root of $S_{1} \cup S_{2}: r_{1}$ (r_{2} is attached to r_{1} as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $\boldsymbol{O}(\log n)$
Proof: depth of a tree of side k is at most $\log _{2} k$

$$
\begin{aligned}
& \text { f: depth of a tree of sive } k \text { is at most } \log _{2} k \\
& \text { depth of element } x: d_{x} \Rightarrow \text { site of tree containing } x \geqslant 2^{d_{x}} \\
& d_{x}=0^{\prime} \text { how can } d_{x} \text { grow? 《合 } \rightarrow \text { sire of tree at (eas) doobles }
\end{aligned}
$$

Similar Strategy: union-by-rank

- rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

- make_set: worst-case cost O (1) \leftarrow
- find : worst-case cost $O(1)$)
- union : amortized worst-case cost $O(\log n)_{\varkappa}$

Disjoint-Set Forest with Union-By-Size Heuristic:

- make_set: worst-case cost O (1)
- find : worst-case cost $O(\log n)^{\prime}$
- union $:$ worst-case cost $O(\log n)$ V

Can we make this faster?

Path Compression During Find Operation

find (a) :

1. if $a \neq$ a.parent then
2. a.parent $:=$ find(a.parent)
3. return a.parent

Complexity With Path Compression

When using only path compression (without union-by-rank):
m : total number of operations

- \underline{f} of which are find-operations
- n of which are make_set-operations m>>n
$\bar{\rightarrow}$ at most $n-1$ are union-operations

$$
f \text { large } \rightarrow f \cong m
$$

Total cost: $\mathbf{O}\left(\underset{\varphi}{m}+\boldsymbol{f} \cdot\left\lceil\log _{2+f / n} n\right\rceil\right)=\boldsymbol{O}\left(m+f \cdot \log _{2+m / n} n\right)$

$$
\begin{aligned}
& \text { if } m \gg n \\
& O\left(m \cdot \log _{2+m / n} n\right)
\end{aligned}
$$

$$
m=n^{1.1}
$$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of \underline{m} disjoint-set (union-find) operations on $\underline{\underline{n}}$ elements (at most n make_set-operations) is

$$
\Theta(m \cdot \alpha(m, n))
$$

Where $\alpha(m, n)$ is the inverse of the Ackermann function.

in practice: $Q(m, n) \leq 4$

$$
\begin{aligned}
\text { Kruskal! } & \text { sorting: } O(m \log n) \\
& \text { unim.fod: } O(m \quad \alpha(m, u))
\end{aligned}
$$

Ackermann Function and its Inverse

Ackermann Function:
For $k, \ell \geq 1$,

$$
A(k, \ell):= \begin{cases}2^{\ell}, & \text { if } k=1, \ell \geq 1 \\ A(k-1,2), & \text { if } k>1, \ell=1 \\ A(k-1, A(k, \ell-1)), & \text { if } k>1, \ell>1\end{cases}
$$

Inverse of Ackermann Function:

$$
\alpha(m, n):=\min \left\{k \geq 1 \mid A(k,\lfloor m / n\rfloor)>\log _{2} n\right\}
$$

Inverse of Ackermann Function

- $\alpha(m, n):=\min \left\{k \geq 1 \mid A\left(k,\left\lfloor^{m} / n\right\rfloor\right)>\log _{2} n\right\}$

$$
m \geq n \Rightarrow A(k,[m / n]) \geq A(k, 1) \Rightarrow \alpha(m, n) \leq \min \{k \geq 1 \mid A(k, 1)>\log n\}
$$

- $A(1, \ell)=2^{\ell}, \quad A(k, 1)=A(k-1,2)$, $A(k, \ell)=A(k-1, A(k, \ell-1))$

$$
A(2,1)=A(1,2)=4
$$

$$
A(3,1)=A(2,2)=A(1, A(2,1))=A(1,4)=2^{4}=16
$$

$$
A(4,1)=A(3,2)=A(2, A(3,1))=A(2,16)=A(1, A(2,15))=2^{A(2,15)}
$$

$$
A(2,15)=A(1, A(2,19))
$$

$$
=2^{2^{A(12,(1)}}
$$

$$
\left.=2 y^{2}\right\}_{16}
$$

$$
10^{80} \approx 2^{250}
$$

