

Chapter 5 Data Structures

Algorithm Theory WS 2017/18

Fabian Kuhn

Summary: Binary and Fibonacci Heaps

	Binary Heap	Fibonacci Heap
initialize	O (1)	O (1)
insert	$O(\log n)$	O (1)
get-min	O (1)	O (1)
delete-min	$O(\log n)$	$O(\log n)$ *
decrease-key	$O(\log n)$	0(1) *
merge	$O(m \cdot \log n)$	O (1)
is-empty	0(1)	O (1)

Dijkska: O(IEI + IVI log IVI)

* amortized time

Minimum Spanning Trees

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step:
 Grow the current component by adding the minimum weight edge *e* connecting the current component with any other node

Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $s \geq v$ are unmarked

3. Get unmarked node u which minimizes d(u):

4. For all
$$e = \{u, v\} \in E$$
, $d(v) = \min\{d(v), w(e)\}$
potentially update $d(v)$ for all reighbors of u

5. mark node u

6. Until all nodes are marked

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

- Analysis identical to the analysis of Dijkstra's algorithm:
 - O(n) insert and delete-min operations
 - O(m) decrease-key operations
- Running time: $O(m + n \log n)$

Kruskal Algorithm

- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

Que log n)

(if weights are nice, this might be faster)

2. For each edge *e*:

 $(e = \{u,v\})$ if e does not close a cycle then

need to be able to check whether e

check whether u k v are in the same component

add e to the current solution

add ?4,v}

need to merge components of ukv

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets

Operations:

- $make_set(x)$: create a new set that only contains element x
- find(x): return the set containing x
- union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

if
$$find(u) \neq find(v)$$
 then

add e to the current solution

union
$$(u, v)$$

Managing Connected Components

- Union-find data structure can be used more generally to manage the connected components of a graph
 - ... if edges are added incrementally
- make_set(v) for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

• Every set S of the partition is identified with a representative, by one of its members $x \in S$

Operations:

- make_set(x): x is the representative of the new set {x}
- find(x): return representative of set $\underline{S_x}$ containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find: f: # find ops

- <u>n</u>: total number of make_set operations
- \underline{m} : total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$ (exactly u make-set ops)
- There are at most n-1 union operations

Remark:

- We assume that the n make_set operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element

• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5,9

Linked List Implementation

$make_set(x)$:

Create list with one element:

time: O(1)

find(x):

Return first list element:

time: O(1)

Linked List Implementation

Time: O(length of list of y)

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union (x_{n-1}, x_n) , union (x_{n-2}, x_{n-1}) , ..., union (x_1, x_2)

$$X_1 \quad X_2 \quad X_3 \quad X_4 \quad ---- \quad X_{n-2} \rightarrow X_{n-1} \rightarrow X_n$$

pointer redir. :
$$1+2+3+... = \Theta(n^2)$$

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

Theorem: The overall cost of \underline{m} operations of which at most \underline{n} are make_set operations is $O(m + n \log n)$.

Weighted-Union Heuristic

Theorem: The overall cost of m operations of which at most n are make_set operations is $O(m + n \log n)$.

Proof:

total cost of make-set & find operations: O(m) need to bound total cost of the union operations Kruskal's XIST als = # pointer redirections Sorting: O(m logn) consider a fixed doment x How often do we need to redirect union- Find part the repr. pointer of x O(m + nlogn) Size of the sed containing x at leased doubles = ≥ log_u redir.

of repr. points of x

Disjoint-Set Forests

- Represent each set by a tree
- Representative of a set is the root of the tree

Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)

union(x, y): attach tree of x to tree of y

Algorithm Theory, WS 2017/18

Fabian Kuhn

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)

Union-By-Size Heuristic

Union of sets S_1 and S_2 :

- Root of trees representing S_1 and S_2 : $\underline{r_1}$ and $\underline{r_2}$
- W.I.o.g., assume that $|S_1| \ge |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $O(\log n)$

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

make_set: worst-case cost $O(1) \leftarrow$

find : worst-case cost O(1)

union : amortized worst-case cost $O(\log n)$

Disjoint-Set Forest with Union-By-Size Heuristic:

make_set: worst-case cost O(1)

find : worst-case cost $O(\log n)$ union : worst-case cost $O(\log n)$

Can we make this faster?

Path Compression During Find Operation

find(a):

- 1. if $a \neq a$. parent then
- 2. a.parent := find(a.parent)
- 3. **return** *a.parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

m: total number of operations

- *f* of which are find-operations
- n of which are make_set-operations \rightarrow at most n-1 are union-operations

Total cost:
$$O\left(m + f \cdot \left\lceil \log_{2+f/n} n \right\rceil \right) = O(m + f \cdot \log_{2+m/n} n)$$

if where $O(m \cdot \log_{2+m/n} n)$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of \underline{m} disjoint-set (union-find) operations on \underline{n} elements (at most n make_set-operations) is

$$\Theta(m \cdot \alpha(m,n)),$$

Where $\alpha(m, n)$ is the inverse of the Ackermann function.

grows extremely slowly

In practice:
$$\alpha(m,n) \leq 4$$

Kruska(! Sorteng: $\alpha(m,n) \leq 4$

union-fiel: $\alpha(m,n) \leq 4$

Ackermann Function and its Inverse

Ackermann Function:

For
$$k, \ell \geq 1$$
,
$$A(k, \ell) \coloneqq \begin{cases} 2^{\ell}, & \text{if } k = 1, \ell \geq 1 \\ A(k-1, 2), & \text{if } k > 1, \ell = 1 \\ A(k-1, A(k, \ell-1)), & \text{if } k > 1, \ell > 1 \end{cases}$$

Inverse of Ackermann Function:

$$\alpha(m,n) := \min\{k \geq 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$$

Inverse of Ackermann Function

• $\alpha(m,n) \coloneqq \min\{k \ge 1 \mid A(k,\lfloor^m/n\rfloor) > \log_2 n\}$ $m \ge n \Longrightarrow A(k,\lfloor^m/n\rfloor) \ge A(k,1) \Longrightarrow \alpha(m,n) \le \min\{k \ge 1 \mid A(k,1) > \log n\}$

•
$$A(1,\ell) = 2^{\ell}$$
, $A(k,1) = A(k-1,2)$, $A(k,\ell) = A(k-1,A(k,\ell-1))$

$$A(2,1) = A(1,2) = 4$$

$$A(3,1) = A(2,2) = A(1, A(2,1)) = A(1,4) = 2^{4} = 16$$

$$A(4,1) = A(3,2) = A(2,A(3,1)) = A(2,16) = A(1,A(2,15)) = 2^{A(2,15)}$$

$$A(7,15) = A(1,A(2,14))$$

$$= 2^{A(2,16)}$$

$$= 2^{A(2,16)}$$

1080 2 250