

Chapter 6 Graph Algorithms

Algorithm Theory WS 2017/18

Fabian Kuhn

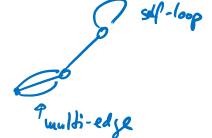
Graphs

Extremely important concept in computer science

Graph
$$G = (V, E)$$

- *V*: node (or vertex) set
- $E \subseteq V^2$: edge set





- Simple graph: no self-loops, no multiple edges
- Undirected graph: we often think of edges as sets of size 2 (e.g., $\{u, v\}$)
- Directed graph: edges are sometimes also called arcs
- Weighted graph: (positive) weight on edges (or nodes)
- (simple) path: sequence v_0, \dots, v_k of nodes such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, \dots, k-1\}$

• ...

Many real-world problems can be formulated as optimization problems on graphs

Graph Optimization: Examples

Minimum spanning tree (MST):

Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:

Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):

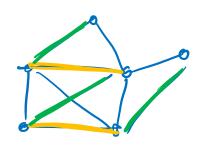
Compute shortest TSP path/tour in weighted graph

Vertex coloring:

- Color the nodes such that neighbors get different colors
- Goal: minimize the number of colors

Maximum matching:

- Matching: set of pair-wise non-adjacent edges
- Goal: maximize the size of the matching



Network Flow

Flow Network:

- Directed graph $G = (V, E), E \subseteq V^2$
- Each (directed) edge e has a capacity $c_e \ge 0$
 - Amount of flow (traffic) that the edge can carry
- A single source node $s \in V$ and a single sink node $t \in V$

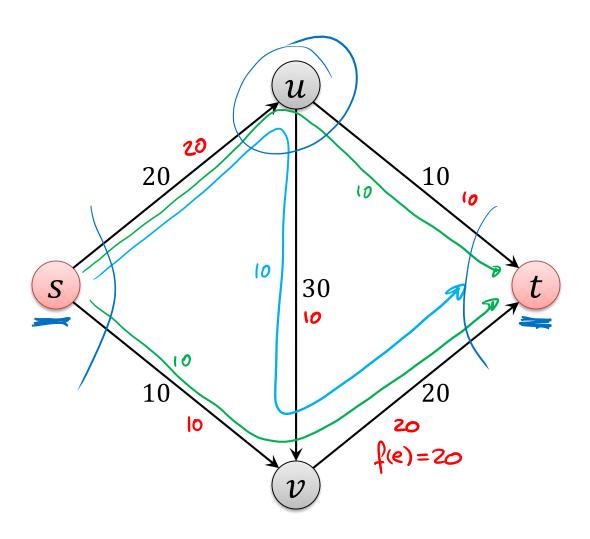
Flow: (informally)

Traffic from s to t such that each edge carries at most its capacity

Examples:

- Highway system: edges are highways, flow is the traffic
- Computer network: edges are network links that can carry packets, nodes are switches
- Fluid network: edges are pipes that carry liquid

Example: Flow Network



Network Flow: Definition

Flow: function $f: E \to \mathbb{R}_{\geq 0}$

• f(e) is the amount of flow carried by edge e

Capacity Constraints:

• For each edge $e \in E$, $f(e) \le c_e$

Flow Conservation:

• For each node $v \in V \setminus \{s, t\}$,

$$\sum_{e \text{ into } v} \underline{f(e)} = \sum_{e \text{ out of } v} f(e)$$

Flow Value:

$$|f| \coloneqq \sum_{e \text{ out of } s} f((s, u)) = \sum_{e \text{ into } t} f((v, t))$$

Notation

We define:

$$f^{\text{in}}(v) \coloneqq \sum_{e \text{ into } v} f(e), \qquad f^{\text{out}}(v) \coloneqq \sum_{e \text{ out of } v}$$

For a set $S \subseteq V$:

$$f^{\text{in}}(S) \coloneqq \sum_{e \text{ into } S} f(e), \quad f^{\text{out}}(S) \coloneqq \sum_{e \text{ out of } S} f(e)$$

Flow conservation: $\forall v \in V \setminus \{s, t\}: f^{\text{in}}(v) = f^{\text{out}}(v)$

Flow value:
$$|f| = f^{\text{out}}(s) = \underline{f^{\text{in}}(t)}$$

For simplicity: Assume that all capacities are positive integers