

Chapter 6 Graph Algorithms

Algorithm Theory WS 2017/18

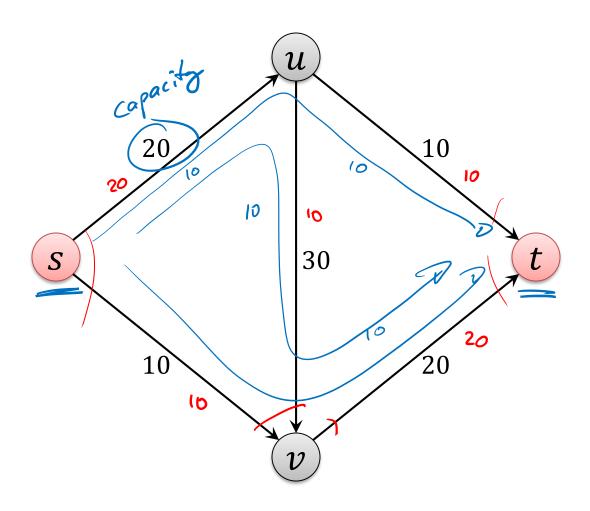
next week

lecture : Mon, Dec 4

exercises: Thu, Dec 7

Fabian Kuhn

Example: Flow Network



Network Flow: Definition

Flow: function $f: \underline{E} \to \mathbb{R}_{\geq 0}$

• f(e) is the amount of flow carried by edge e

Capacity Constraints:

• For each edge $e \in E$, $f(e) \le c_e$

$$\leq f_{\text{out}(v)} = \leq f_{\text{in}(v)}$$

Flow Conservation:

• For each node $v \in V \setminus \{s, t\}$,

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Flow Value:

$$|f| \coloneqq \sum_{e \text{ out of } s} \underline{f((s,u))} = \sum_{e \text{ into } t} \underline{f((v,t))}$$

Notation

We define:

$$f^{\mathrm{in}}(v) \coloneqq \sum_{e \; \mathrm{into} \; v} f(e), \qquad f^{\mathrm{out}}(v) \coloneqq \sum_{e \; \mathrm{out} \; \mathrm{of} \; v} f(e)$$

For a set $S \subseteq V$:
$$f^{\mathrm{in}}(S) \coloneqq \sum_{e \; \mathrm{into} \; S} f(e), \qquad f^{\mathrm{out}}(S) \coloneqq \sum_{e \; \mathrm{out} \; \mathrm{of} \; S} f(e)$$

Flow conservation: $\forall v \in V \setminus \{s, t\}: f^{in}(v) = f^{out}(v)$

Flow value: $|f| = f^{\text{out}}(s) = f^{\text{in}}(t)$

For simplicity: Assume that all capacities are positive integers

The Maximum-Flow Problem

Maximum Flow:

Given a flow network, find a flow of maximum possible value

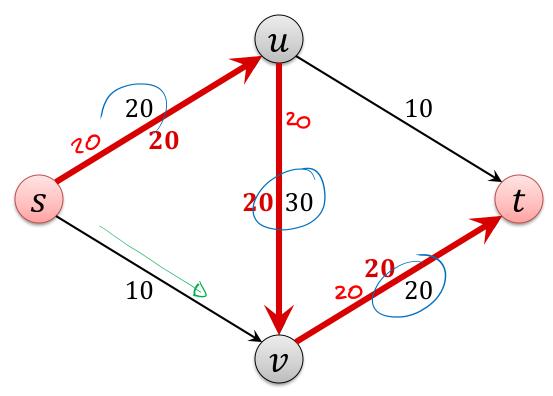
- Classical graph optimization problem
- Many applications (also beyond the obvious ones)
- Requires new algorithmic techniques

Maximum Flow: Greedy?

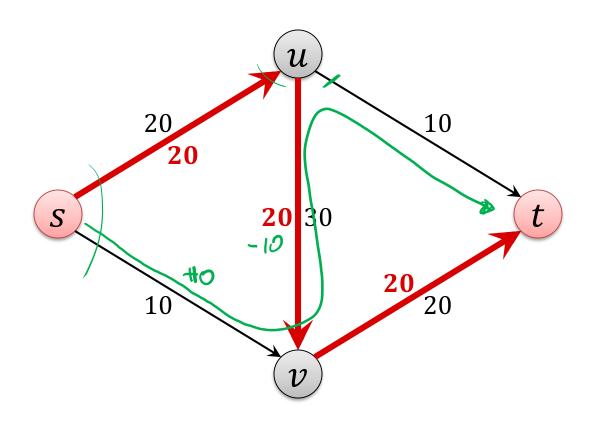
Does greedy work?

A natural greedy algorithm:

 As long as possible, find an s-t-path with free capacity and add as much flow as possible to the path



Improving the Greedy Solution



- Try to push 10 units of flow on edge (s, v)
- Too much incoming flow at v: reduce flow on edge (u, v)
- Add that flow on edge (u, t)

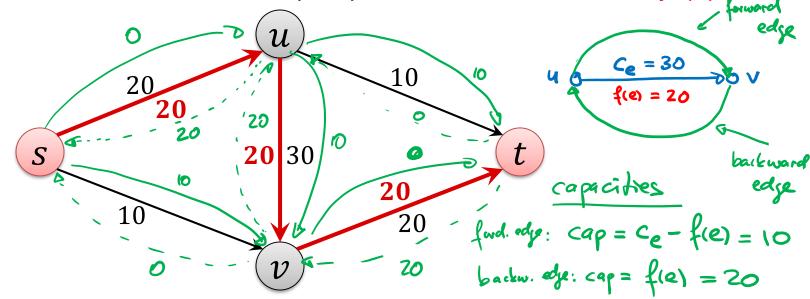
Residual Graph

Given a flow network $\underline{G} = (V, E)$ with capacities $\underline{c_e}$ (for $e \in E$)

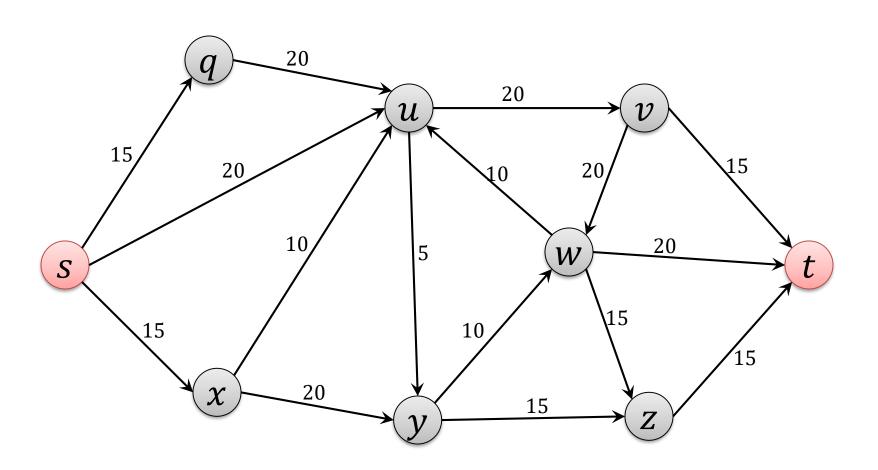
For a flow \underline{f} on G, define directed graph $G_f = (V_f, E_f)$ as follows:

• Node set $V_f = V$

- Tresidual graph
- For each edge e=(u,v) in E, there are two edges in E_f :
 - forward edge e = (u, v) with residual capacity $c_e f(e)$
 - backward edge e' = (v, u) with residual capacity f(e)

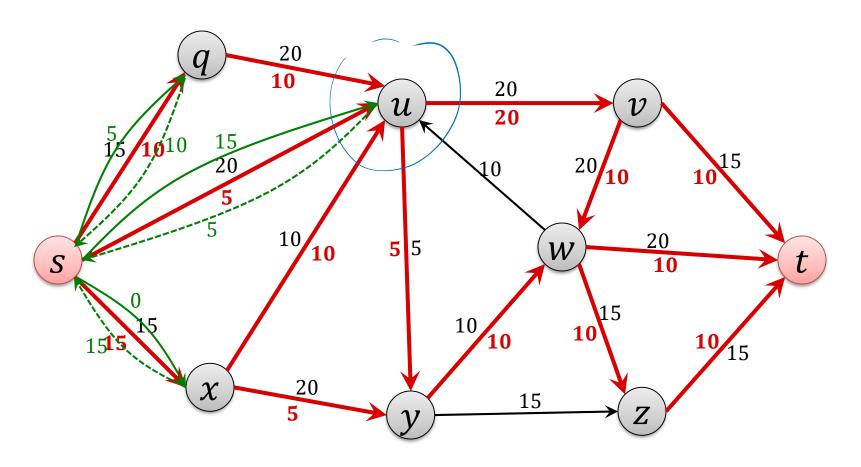


Residual Graph: Example



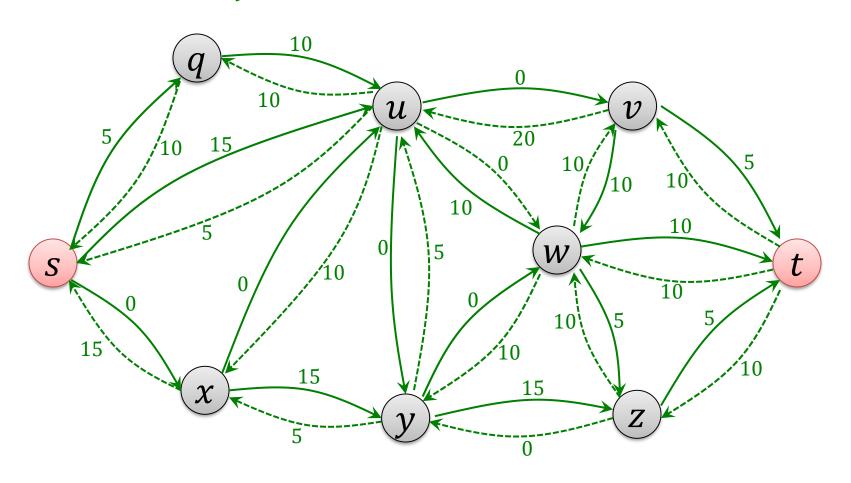
Residual Graph: Example

Flow f

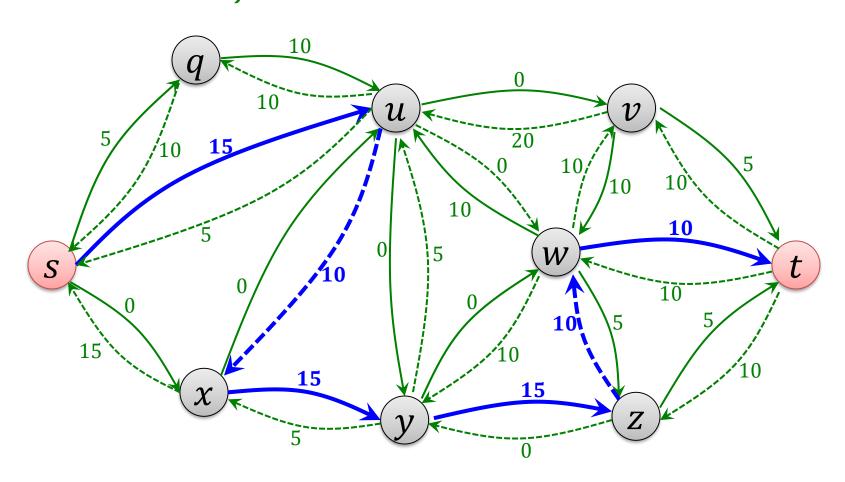


Residual Graph: Example

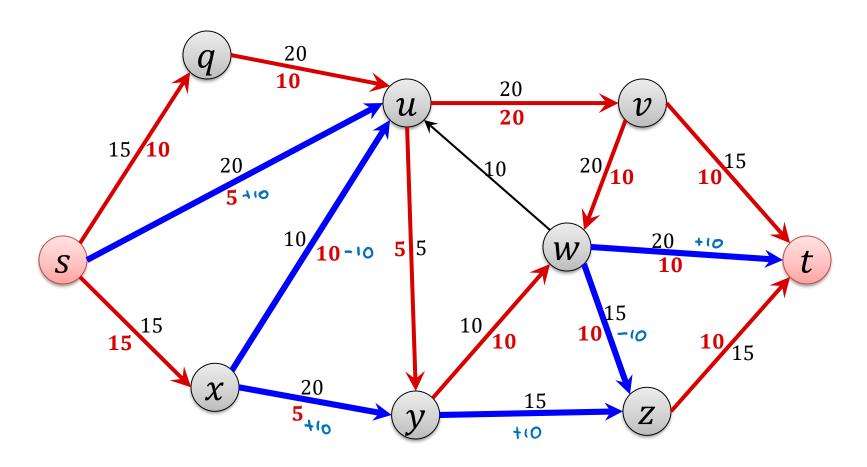
Residual Graph G_f



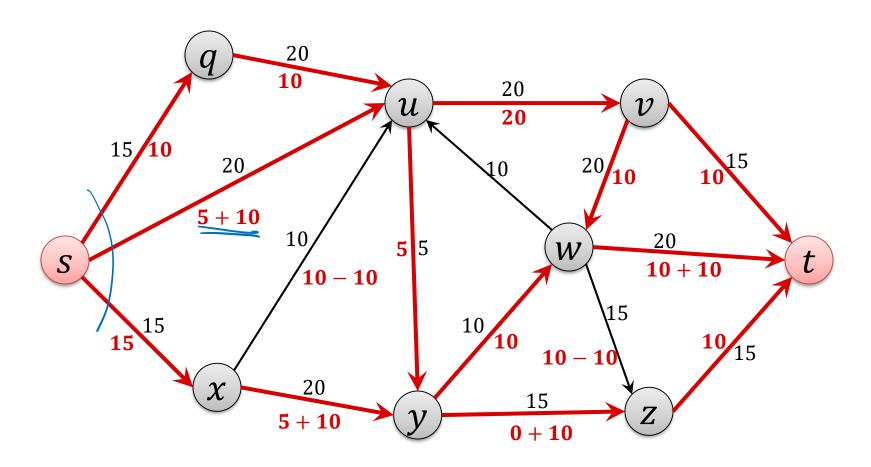
Residual Graph G_f



Augmenting Path



New Flow



Definition:

An augmenting path P is a (simple) s-t-path on the residual graph G_f on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the augmenting path P

Augment flow f to get flow f':

• For every forward edge (u, v) on P:

$$f'((u,v)) \coloneqq f((u,v)) + bottleneck(P,f)$$

• For every backward edge (u, v) on P:

$$f'((v,u)) := f((v,u)) - bottleneck(P,f)$$

Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is

$$|f'| = |f| + bottleneck(P, f).$$

Proof:

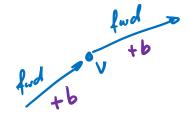
$$f'$$
 is legal $\forall e \in E : O \leq f'(e) \leq C_e$ (I)
$$\forall v \in V \setminus S, t \leq : \int_{-\infty}^{\infty} (v) = \int_{-\infty}^{\infty} (v) \qquad (I)$$

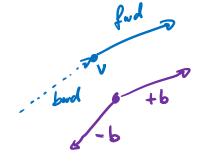
free bud, edge cop = f(e) f'(e) = f(e) - b

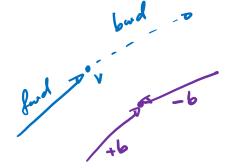
Augmented Flow

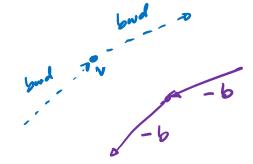
Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is

$$|f'| = |f| + bottleneck(P, f)$$
.









Fabian Kuhn

Ford-Fulkerson Algorithm

Improve flow using an augmenting path as long as possible:

- 1. Initially, f(e) = 0 for all edges $e \in E$, $G_f = G$
- 2. **while** there is an augmenting s-t-path P in G_f do
- 3. Let P be an augmenting s-t-path in G_f ;
- 4. $f' \coloneqq \operatorname{augment}(f, P);$
- 5. update f to be f';
- 6. update the residual graph G_f
- 7. **end**;

If' = If I + bottle neck (P,f)

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm terminates after at most C iterations, where

$$C = \text{"max flow value"} \le \sum_{e \text{ out of } s} c_e$$
.

At all times, for all
$$e \in E$$
, $f(e)$ is an integer

in one iter augm. P : residual cap are integers

bottleneck $(P,f) > 0$ (also bottleneck (P,f) is integer)

 $\implies bottleneck (P,f) > 1$
 $\implies uew flow values are integers$
 $\implies |f'| \ge |f| + 1$
 $\implies \le C$ iterations

Ford-Fulkerson Running Time

-m: #edges

Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm can be implemented to run in O(mC) time.

Proof:

Claim: one iteration can be computed in O(m) time

1. Compute / update residual graph shirst ites: O(m)

2. find augm. path / conclude there is no augm. path

Lo S-t path in Ge with res. cap. >0

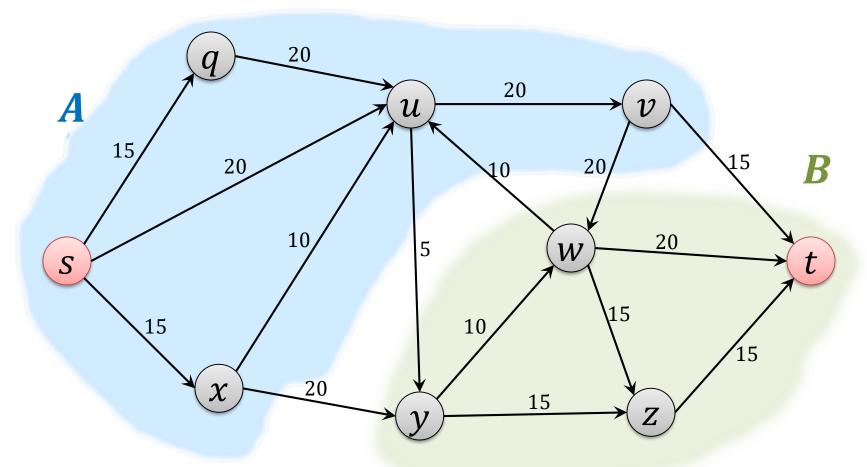
Lo graph travosal (DTS/BTS): O(m) time

3. update flow values: O(m)

s-t Cuts

Definition:

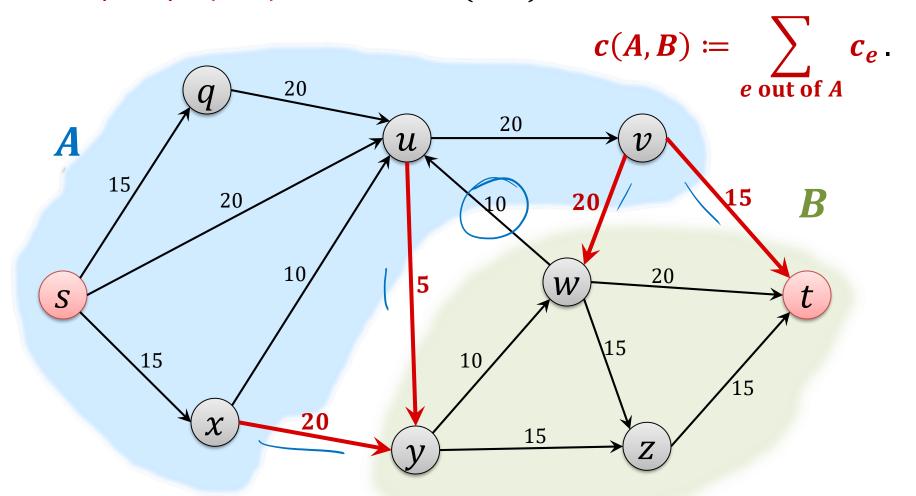
An s-t cut is a partition (A, B) of the vertex set such that $\underline{s} \in A$ and $t \in B$



Cut Capacity

Definition:

The capacity c(A, B) of an s-t-cut (A, B) is defined as



Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then,

$$|f| = f^{\text{out}}(A) - f^{\text{in}}(A).$$

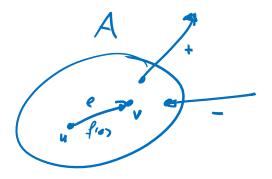
$$|f| = f^{out}(S) \qquad (= f^{in}(H))$$

$$|f| = f^{out}(S) - f^{in}(S)$$

$$= \sum_{v \in A} (f^{out}(v) - f^{in}(v))$$

$$= 0 except for v=S$$

$$= f^{out}(A) - f^{in}(A)$$



Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then,

$$|f| = f^{\text{out}}(A) - f^{\text{in}}(A).$$

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then,

$$|f| = f^{\mathrm{in}}(B) - f^{\mathrm{out}}(B)$$

either do symmetric argument
61:
$$f^{out}(A) = f^{in}(B)$$

 $f^{in}(A) = f^{out}(B)$

Upper Bound on Flow Value

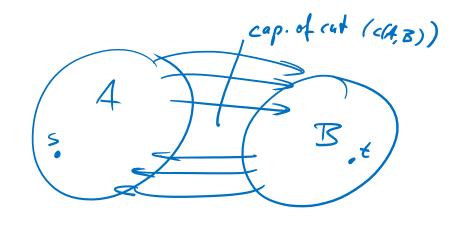
Lemma:

Let f be any s-t flow and (A, B) any s-t cut. Then $|f| \le c(A, B)$.

$$|f| = \int_{a}^{out} (A) - \int_{a}^{in} (A) \leq C(A,B)$$

$$\int_{a}^{in} (A) \leq C(A,B)$$

$$\int_{a}^{in} (A) \geq O$$

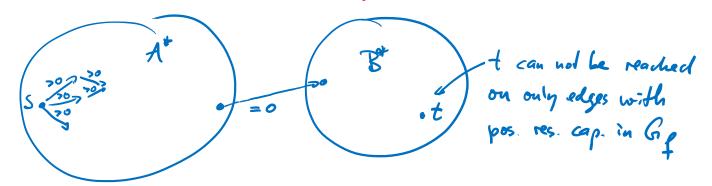


Lemma: If \underline{f} is an $\underline{s-t}$ flow such that there is no augmenting path in G_f , then there is an $\underline{s-t}$ cut (A^*, B^*) in G for which

$$|f|=c(A^*,B^*).$$

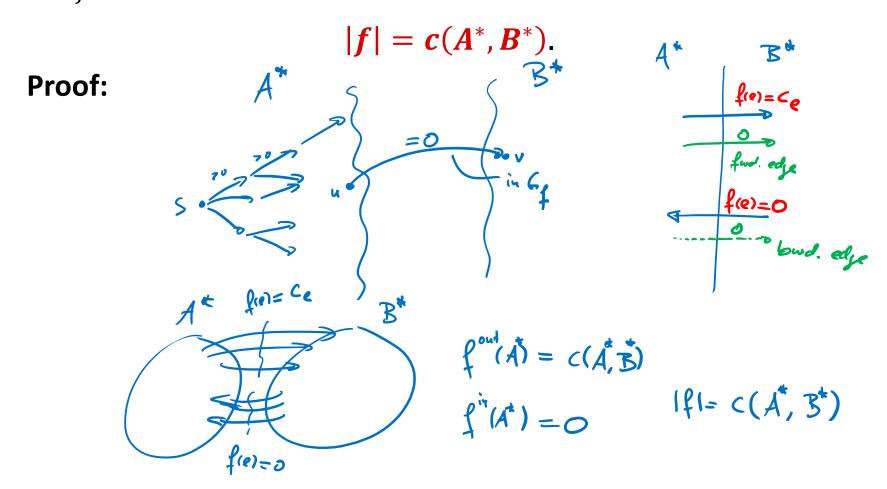
Proof:

• Define A^* : set of nodes that can be reached from s on a path with positive residual capacities in G_f :



- For $B^* = V \setminus A^*$, (A^*, B^*) is an s-t cut
 - By definition $s ∈ A^*$ and $t ∉ A^*$

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which



Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

$$|f|=c(A^*,B^*)$$

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Min-Cut Algorithm

Ford-Fulkerson also gives a min-cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time.

f maximum
$$=$$
 no augm. path

can find cut (A^{*}, B^{*}) s.t. If $I = c(A^{*}, B^{*})$

Lo as before using DFS/BFS

 (A^{*}, B^{*}) is an s-t cut of min capacity

because: for every other s-t cut (A, B)

we know that If $I \leq c(A, B)$
 $C(A^{*}, B^{*}) \leq c(A, B)$

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

FF Sines
$$f^*$$
 cut (A^*, B^*)
S.t. f^* maximum flow
 (A^*, B^*) min. $s \leftarrow cut$
 $(f^*) = c(A^*, B^*)$

Integer Capacities

Theorem: (Integer-Valued Flows)

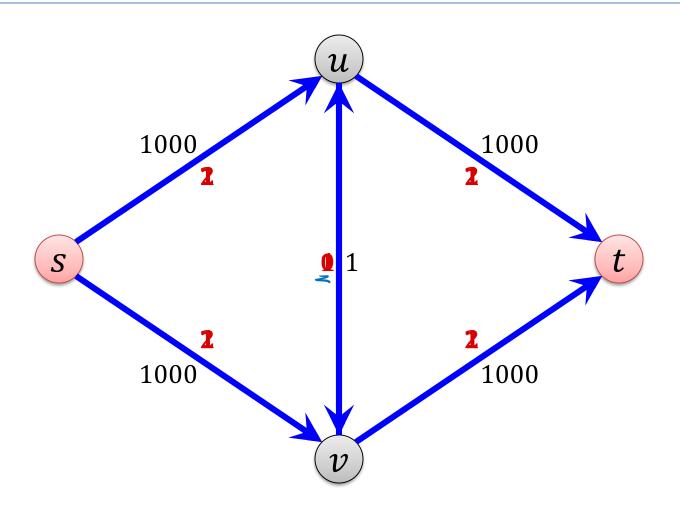
If all capacities in the flow network are integers, then there is a maximum flow f for which the flow f(e) of every edge e is an integer.

Non-Integer Capacities

What if capacities are not integers?

- rational capacities: < Q
 - can be turned into integers by multiplying them with large enough integer
 - algorithm still works correctly
- real (non-rational) capacities:
 - not clear whether the algorithm always terminates
- even for integer capacities, time can linearly depend on the value of the maximum flow

Slow Execution



• Number of iterations: 2000 (value of max. flow)

Improved Algorithm

Idea: Find the best augmenting path in each step

- best: path P with maximum bottleneck(P, f)
- Best path might be rather expensive to find
 → find almost best path,
- Scaling parameter Δ : (initially, Δ = "max c_e rounded down to next power of 2")
- As long as there is an augmenting path that improves the flow by at least Δ , augment using such a path
- If there is no such path: $\Delta := \Delta/2$

Scaling Parameter Analysis

Lemma: If all capacities are integers, number of different scaling parameters used is $\leq 1 + \lfloor \log_2 C \rfloor$.

Δ-scaling phase: Time during which scaling parameter is Δ

Length of a Scaling Phase

Lemma: If \underline{f} is the flow at the end of the $\underline{\Delta}$ -scaling phase, the maximum flow in the network has value at most $|f| + m\Delta$.

If
$$|f| < |f| + m \cdot \Delta$$
 define out $(\overline{A}, \overline{B})$

$$\overline{A}$$

$$\overline{B}$$

$$|f| = \int_{0}^{\infty} (\overline{A}) - \int_{0}^{\infty} (\overline{A})$$

$$|f| = \int_{0}^{\infty} (\overline{A}) - \lim_{\overline{A}} (\overline{A})$$

Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase is at most 2m.

at the beginning of the
$$\Delta$$
-scaling phase

Latthe end of the 2Δ -scaling phase

 $|f^*| < |f| + 2 \text{ in } \Delta$ (prev. (emana)

each augm. path improves flow by Δ
 $\Rightarrow \leq 2 \text{ in augm. in } \Delta$ -scaling phase

Tunning time: $\Theta(\log C) \cdot O(m) \cdot O(m) = O(m^2 \log C)$

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with scaling parameter and integer capacities is at most $O(m \log C)$. The algorithm can be implemented in time $O(m^2 \log C)$.

Strongly Polynomial Algorithm

Time of regular Ford-Fulkerson algorithm with integer capacities:

Time of algorithm with scaling parameter:

$$O(m^2 \log C)$$

- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in n?
- Always picking a shortest augmenting path leads to running time

$$O(m^2n)$$

also works for arbitrary real-valued weights

Other Algorithms

 There are many other algorithms to solve the maximum flow problem, for example:

Preflow-push algorithm:

- Maintains a preflow (\forall nodes: inflow \ge outflow)
- Alg. guarantees: As soon as we have a flow, it is optimal
- Detailed discussion in 2012/13 lecture
- Running time of basic algorithm: $O(m \cdot n^2)$
- Doing steps in the "right" order: $O(n^3)$

• Current best known complexity: $O(m \cdot n)$

- For graphs with $\underline{m \ge n^{1+\epsilon}}$ (for every constant $\epsilon > 0$)
- For sparse graphs with $m \le n^{16/15-\delta}$
- approximate max flow in undirected graphs

[King, Rao, Tarjan 1992/1994]

[Orlin, 2013]