UNI
I

FREIBURG

Chapter 6
Graph Algorithms

Algorithm Theory
WS 2017/18 od wek

(9cdure - Mou, Dec ¥
exerises: lhw, Dec]

Fabian Kuhn

UNI

Example: Flow Network

FREIBURG

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Network Flow: Definition

UNI

FREIBURG

Flow: function f: E - R, :fmv,o

—

* f(e)isthe amount of flow carried by edge e

Capacity Constraints: 2 { @
oud
 Foreachedgee €E, f(e) <c, ey

Flow Conservation:
* Foreachnodev eV \ {s,t},

Y fE@=) f@

e intov e out of v

Flow Value:

= \;2 ﬁ;n \v)

fl=), flew)=) f(wy)

—_—
Py

e out of s eintot

Algorithm Theory, WS 2017/18 Fabian Kuhn

—_—

AN
3

Notation

UNI
f

FREIBURG

We define:
frw= Y f@, U=y f@
e intov e out of v
ForasetS C V: > >
Frs)=) fl@), b= Y fe)
einto S e outof S

Flow conservation: Vv € V \ {s,t}: f(v) = f°"(v)
Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

The Maximum-Flow Problem

UNI
f

FREIBURG

Maximum Flow:

Given a flow network, find a flow of maximum possible value

* Classical graph optimization problem
 Many applications (also beyond the obvious ones)

* Requires new algorithmic techniques

Algorithm Theory, WS 2017/18 Fabian Kuhn

Maximum Flow: Greedy?

UNI
f

FREIBURG

Does greedy work?

A natural greedy algorithm:

* Aslong as possible, find an s-t-path with free capacity and
add as much flow as possible to the path

Algorithm Theory, WS 2017/18 Fabian Kuhn

Improving the Greedy Solution

UNI

FREIBURG

* Try to push 10 units of flow on edge (s, v)
* Too much incoming flow at v: reduce flow on edge (u, v)
e Add that flow on edge (u, t)

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Residual Graph

Given a flow network G = (V, E) with capacities Ce (fore € E)

For a flow f on G, define directed graph Gf = (V¢, Ef) as follows:
* Node set Ve =V T residual aeaply

P
e

* Foreachedgee = (u,v) in E, there are two edges in Ef:
— forward edge e = (u, v) with residual capacity ¢, — f (e)
— backward edge e’ = (v, u) with residual capacity f(e)‘u

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Residual Graph: Example

UNI
f

FREIBURG

(@

15

10

@ o

15

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

UNI

Residual Graph: Example

FREIBURG

Flow f

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Residual Graph: Example

UNI

FREIBURG

Residual Graph G

Algorithm Theory, WS 2017/18 Fabian Kuhn

11

UNI

Augmenting Path

FREIBURG

Residual Graph G

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Augmenting Path

UNI

FREIBURG

Augmenting Path

Algorithm Theory, WS 2017/18

Fabian Kuhn

13

Augmenting Path

UNI
f

FREIBURG

New Flow

B i
‘ 10 — 10
@

5+10

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

UNI

Augmenting Path

FREIBURG

Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
"~ augmenting path P

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)
* For every backward edge (u, v) on P:

/(@) = £((v,w) - bottleneck(P, f)

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Augmented Flow

UNI

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow f” is legal and its value is
If'| = |f| + bottleneck(P, f).
\.—N

Proof: / b
h = / .4 (P (aves S 0w a d. e
10121214k s & fod. el

i\ \S (Qac\\ \deeg: O =< f(e\< Ce (T) iy —
Ny eVaGst3 g W = g w (@)

() 4. el backw. ed
fo %, o_edye
Ce '
. &(ﬂ 40(eng Cor £(Q3

(Q‘— QLQ\“\O < Cg

(aV d& &.qo(edJc CC _Q(Q)> g(e) = -e‘ﬂ L

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

FREIBURG

Augmented Flow

UNI
f

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting

augmented flow f” is legal and its value is

If'| = |f| + bottleneck(P, f).

Proof:
((ow CBu 3€s Ya l"‘eﬂ

((oueh(o: vE St ew rP>
ek

M w«/4"
an

0; " ,’.'V
V 0 ‘r", b
’ -b

Algorithm Theory, WS 2017/18 Fabian Kuhn

0

17

Ford-Fulkerson Algorithm

UNI
f

FREIBURG

* Improve flow using an augmenting path as long as possible:

1. Initially, f&f’()_for alledgese €EE, Gr = G

2. while there is an augmenting s-t-path P in G¢ do
3 Let P be an augmenting s-t-path in G¢;
4, f' == augment(f, P);

= 0= 121 + boflewed (P
5 update f to be f; Q g cuede (¥,0)
6 update the residual graph G
7. end;

Algorithm Theory, WS 2017/18

Fabian Kuhn

18

Ford-Fulkerson Running Time

UNI
f

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm terminates after at most C iterations, where

C = "max flow value" < z Co .

e out of s

—

Proof:

Al all oLMes/ (u all ee €, ,C(?) s Gu .‘nksp,r

Billa for=0
‘L"‘ suUR ikr- CW\BM ? - e<idual (aP. are ‘ml-g%os
bllenect (BLY 7O (o Lofllenede (B,£) 1o tubepes)
—= botlewect (7,£)2 |
— wew How valuss are tley2ss
— \g‘\ ?:\.el + |

= £ (deradirus

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Ford-Fulkerson Running Time

UNI

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

w: fedigs
Proof: 4
C(am ouQ Vgsabow can le (om‘m\lfa(w OW) S\ Py

F-rs) u)t-' 6(“*
. COw\Qu){ /ldfdﬁk res dual %"L <:(q(_u ler. ¢ O(“))

2' %& Angin . Q~ -\-L /\ceno(ul.c Hore % wo Qg fat—e

gk kosal (DFS/BFS) ¢ Ofw) huce

3 updak fow walugs : QW)

Algorithm Theory, WS 2017/18 Fabian Kuhn

20

S-t Cutsi

UNI

FREIBURG

Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4

andt € B
@ 20
A » 20 Q

15 0 o 15 B

5 5 t
10

A =l

15

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Cut Capacity

UNI
f

FREIBURG

Definition:
The capacity c(A4, B) of an s-t-cut (4, B) is defined as

c(A,B) = z Ce.
@ 20 eoutof A

15 @ 20 5 B

10

15

s
gl

Algorithm Theory, WS 2017/18 Fabian Kuhn 22

Cuts and Flow Value

UNI

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

Proof:

—
]] ll
M =
\Ya)
S ~
o
< |
]
—L’Q
BN —
s &
-/

Algorithm Theory, WS 2017/18

—

—_—

Fabian Kuhn

f] = foUt(4) — f™(4).

23

FREIBURG

Cuts and Flow Value

UNI
f

FREIBURG

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foU(4) — f"(A).

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

fl = f™(B) — fo"(B).

Proof:

QAJ‘L’J do ngme(-r’»c mrwm)-
ot chtn - £
ﬁ‘wﬁ): £m4($)

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

UNI
f

FREIBURG

Upper Bound on Flow Value

Lemma:

Let f be any s-t flow and (4, B) any s-t cut. Then |f| < c(4, B).
- —

Proof:

ca[). o'(. caf /c/,l, 3))

f1= 0= 4 < camy

g"*(A) < ¢ (A.Z)j

{{"(m z O

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

Ilfl _ c(A*,B*)]

* Define A™: set of nodes that can be reached from s on a path
with positive residual capacities in G¢:

Proof:

“ LG hol LL May{q_gd
ou 0“‘7 f«(ys withh
P0$\) {98 @/), b 67-(

e ForB* =V \ A" (A%, B") isan s-t cut
— By definitions € A"andt & A"

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

fl=ca,B). 4
Proof: A" E |
. _f‘;’:‘e
/D =0 - S
7‘,72 ‘:'g o e o
T auth f « [fo=0
N\ (¥ o
~ buwd, ot
At 2“'\: Ce 'B*
oud & %
{7 = (4B
:‘l = “ *
{(?):a

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

|f| = c(4%, B¥).
Proof:

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:

FTF giws @ foo § od aad (4B
sy f1=c(4,)

we kawe sen Yo (£‘S C(A*,‘E*)
g..: vy (a.aa\ _Q(bw

Algorithm Theory, WS 2017/18 Fabian Kuhn 29

UNI
FREIBURG

Min-Cut Algorithm A b wixbam .

/

Ford-Fulkerson also gives a min-cut algorithm:
- ———

Theorem: Given a flow f of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

Proof:
f \uax‘w\uua — o qum. ‘M\u\

caw od cd (A, F) sb 1fi= (4)
Ls s fee wig DS/ B7S

(A*,) % aw s-t cud »{ M (a/ao?/Z.
pacuge + fr vy ol st ed (4,F)
we buew Hal @\ s c(4,B)

Y

AA* B < c(ABR)

Algorithm Theory, WS 2017/18 Fabian Kuhn 30

Max-Flow Min-Cut Theorem

UNI

FREIBURG

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Proof:

TP s £ cd A7)
SJ £4‘ wiL A I‘m U ,Now
(A', %’*) WAt o S'{’(ud'

(0 = (&, BY)

Algorithm Theory, WS 2017/18 Fabian Kuhn

31

Integer Capacities

UNI
f

FREIBURG

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Proof:

‘:F:F 51‘\/(5 CGu \lv*. fO'(

Algorithm Theory, WS 2017/18 Fabian Kuhn 32

Non-Integer Capacities

UNI
FREIBURG

What if capacities are not integers?

* rational capacities: < ¢/

— can be turned into integers by multiplying them with large enough integer

— algorithm still works correctly

* real (non-rational) capacities:

— not clear whether the algorithm always terminates

* even for integer capacities, time can linearly depend on the value
of the maximum flow

Algorithm Theory, WS 2017/18 Fabian Kuhn 33

Slow Execution

UNI

FREIBURG

 Number of iterations: 2000 (value of max. flow)

Algorithm Theory, WS 2017/18 Fabian Kuhn

34

UNI

Improved Algorithm

FREIBURG

Idea: Find the best augmenting path in each step

* best: path P with maximum bottleneck(P, f)
e

* Best path might be rather expensive to find
- find almost best path
L \

e Scaling parameter‘A_;
(initially, A = "max ¢, rounded down to next power of 2")

* Aslong as there is an augmenting path that improves the flow by

at least A, augment using such a path
=

e If there is no such path: A := 4/,

r—3

Algorithm Theory, WS 2017/18 Fabian Kuhn 35

UNI

Scaling Parameter Analysis

FREIBURG

Lemma: If all capacities are integers, number of different scaling
parameters used is < 1 + |log, C|.

C *wax C,
e

L‘/C—u‘j:

\
\uy

(

LgaCe]
z ‘P‘ 61, scd)u& params ¢ Lég Cu\k.} +1

- Laé‘
1

* A-scaling phase: Time during which scaling parameter is A
ruuu‘l"ﬁ'.
—Jl_ilmm M *)
o(4 €) K

Algorithm Theory, WS 2017/18 Fabian Kuhn 36

UNI

Length of a Scaling Phase

FREIBURG

Lemma: If f is the flow at the end of the A-scaling phase, the
maximum flow in the network has value at most |f| + mA.

1 < [l+m A defre et (AR)

A (K &07 CC_A
20 = <4
7/A \zAb ® ‘é
> NQ fo<a

01= £ (@)
> c(ﬁ,i) ~“ A ~wmA

2 c(AR) - wA
'?

Algorithm Theory, WS 2017/18 Fabian Kuhn 37

Length of a Scaling Phase

|
FREIBURG

UNI

Lemma: The number of augmentation in each scaling phase is at
most 2m.

al U lafa/:uu\vé 4 '\(‘Q A-Sc«()»g fL&LQ
Ls attle ad o{ e ZA'&J«-‘-A (Lape

— lg*) < lfl F2mA (e G
cagl G- ‘M“{ Z«@moes 4(0«4; %a A

=3 < L G ta A-saaliy @Mu
g b (D(faé €) + O(w) + Aw) = O(wk by C)

=SSN

Algorithm Theory, WS 2017/18 Fabian Kuhn 38

UNI

Running Time: Scaling Max Flow Alg.

FREIBURG

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(m log C). The
algorithm can be implemented in time 0 (m? log C).

Algorithm Theory, WS 2017/18 Fabian Kuhn 39

Strongly Polynomial Algorithm

UNI
FREIBURG

* Time of regular Ford-Fulkerson algorithm with integer capacities:

omer-

* Time of algorithm with scaling parameter:
0(m?log C

—_——

—

* O(log() is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

* Always picking a shortest augmenting path leads to running time

CowmnS

— also works for arbitrary, real-valued weights

VA
‘Aek~kﬂjaj'!m

e —
—_—

Algorithm Theory, WS 2017/18 Fabian Kuhn 40

UNI

Other Algorithms

FREIBURG

* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm:

— Maintains a preflow (V nodes: inflow > outflow)

— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in 2012/13 lecture
— Running time of basic algorithm: O0(m - n?)

— Doing steps in the “right” order: 0(n3)

e Current best known complexity: O(m - n)

— For graphs with m > n'*€ [King,Rao,Tarjan 1992/1994]
(for every constant € > 0) —

— For sparse graphs with m < n16/15-6 [Orlin, 2013]

- awmﬂmak (AOKX y.w MR uu&?lv(v]-eae 8ra(71\$ O(o(l))
W' n

Algorithm Theory, WS 2017/18 Fabian Kuhn t W ;(M 41

