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Ford-Fulkerson Algorithm
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* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

2. while there is an augmenting s-t-path P in G¢ do
3 Let P be an augmenting s-t-path in G¢;

4. f' = augment(f, P);

5 update f to be f;

6 update the residual graph G

7

end;
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Conclusions Ford Fulkerson Algorithm
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Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a
maximum flow f for which the flow f(e) of every edge e is an
integer.
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Strongly Polynomial Algorithm
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* Time of regular Ford-Fulkerson algorithm with integer capacities:

* Time of algorithm with scaling parameter:
0(m?log C)

* O(log() is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

* Always picking a shortest augmenting path leads to running time
0(m?n)

— also works for arbitrary real-valued weights
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Other Algorithms
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* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm:
— Maintains a preflow (V nodes: inflow > outflow)
— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in 2012/13 lecture
— Running time of basic algorithm: O0(m - n?)
— Doing steps in the “right” order: 0(n3)

* Current best known complexity{O (m - n)\
[King,Rao,Tarjan 1992/1994]

— For graphs with m > nl*€
(for every constant € > 0)

— For sparse graphs with m < n16/15-6 [Orlin, 2013]
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Maximum Flow Applications
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 Maximum flow has many applications

 Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:
— related network flow problems
— computation of small cuts
— computation of matchings
— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints
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Undirected Edges and Vertex Capacities  _

UNI
FREIBURG

c v c < 5.
Undirected Edges: ! — — = /v%

* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v & {s, t}: . \o/
. \0 2
in — fout < —>2a. ‘0
ff'w) = ") < ¢ R e

* Replace node v by edge e, = {Vip, Vout}:

o
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Minimum s-t Cut @@

UNI
f

FREIBURG

Given: undirected graphg = (V,E),nodes s, t €V

———

s-t cut: Partition (A,B) of Vsuchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut

muu}:Ld%m.e:
% NAw-n)

3:?( 0'( cwt = ‘#QJSQS Cr¢sg>:.~l Hae Cu‘}
Objective: find s-t cut of minimum size
creal -(\0“0 WI“""’"E 1) walee eo(ys Lreckedd “— o — o2

—

2) edy cap. = )

SIR O'(, C«‘ :v\ é = car cal :v\ &(d’w MJ‘W&‘&
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Edge Connectivity
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Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCEI|X|<k-1.
nod Ao twove = L ec?&ec ;M wale @ discounectel
A ng Couuucl"»‘vﬂup NG -
‘ max & sd.& Dy
E—dy{ counectecl

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum S-1 -t cut for some 5,1 tevlV

— Actually for all s, t in different components of Gy = (V E\ X)
neeld 3 call win g-t-cut aly. M-l Buces

* Possible algorithm: fix s and find min s-t cut forallt # s

T T 2
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Minimum s-t Vertex-Cut
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Given: undirected graph ¢ = (V,E), nodes s, t € V

s-t vertex cut: Set X c V suchthats,t € X and sand t are in

————

different components of the sub-graph G[V \ X] induced by V' \ X

Size of vertex cut: | X| . /\®/\ .t

—

Objective: find s-t vertex-cut of minimum size

—

* Replace undirected edge {u, v} by (u, v) and (v, u)

* Compute max s-t flow for edge capacities o0 and node capacities

c, =1forv #s,t sty O

* Replace each node v by v;, and vgy;: Z’

* Min edge cut corresponds to min vertex cut in G
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Vertex Connectivity i)
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Definition: A graph G = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for
every edge set

XceVlV,|lX|<k-1.
w& &o w0Vl al Lﬁa&) Y \aoo(os '\‘p oeag(omu("’ 6

V_Zﬂeic Oun . K(()
//@ max. b sd.
€ 5 L —verldex counecles

Goal: Compute vertex connectivity k(G ) of G
(and node set X of size k(G) that divides G into = 2 parts)
all
« Compute minimum s-t vertex cut for fixed s and all t # sZ
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Edge-Disjoint Paths
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Given: Graph ¢ = (V,E) withnodes s, t € V

—

Goal: Find as many edge-disjoint s-t paths as possible

S / ﬁ
Solution: S —

* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

! ) <
Flow f induces |f| edge-disjoint paths: SN

* Integral capacities = can compute integral max flow f

* Get |f| edge-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)

/

—
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Vertex-Disjoint Paths
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Given: Graph G = (V,E) withnodes s,t € I/

Goal: Find as many internally vertex-disjoint s-t paths as possible

aa )
Solution: > N

* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)
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Theorem: (edge version)
For every graph G = (V, E) with nodes s,t € V, the size of the

minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

/\D/\

L\a-é
—— O AN

S“O

* Both versions can be seen as a special case of the max flow min
cut theorem
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Baseball Elimination
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Team Wins Losses To Play Against = 1;;
i ?; T; NY Balt. T. Bay
New York 81 69 12 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 74 9 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston ;} 84 J 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins

* Which teams can still win (as least as many wins as top team)?
* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins

* Ifforsomeli,j: w; +1; < w; 2 team i is eliminated

» Sufficient condition, but not a necessary one!
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Baseball Elimination
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Team Wins Losses To Play Against = 1;;
i w; ?; ; Balt. T. Bay
New York | 81 69 12 - 2 & | 2 3
Baltimore 79 77 6 2 - 2 1 1
TampaBay | 79 74 9 O, 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

e Can Toronto still finish first?

* Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

e Hence: Toronto cannot finish first

* How about the others? How can we solve this in general?]
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* Canteam 3 finish with most wins?

Remaining number team
of games between
the 2 teams

Number of wins team i can
game nodes have to not beat team 3

nodes

* Team 3 can finish first iff all source-game edges are saturated
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Reason for Elimination

AL East: Aug 30, 1996

Team Wins Losses To Play Against = 1;;
i w; ?; T; \'\ Balt. Bost. Tor
New York 75 59 28 - ( 3 8 7 3
Baltimore | 71 63 28 3 [\ | 2 7 4
Boston 69 66 27 8 2 |~ ] 0| o©
Toronto 63 72 27 7 7 0 - 0
Detroit 49 86 27 3 4 0 0 -

 Detroit could finish with 49 4+ 27 = 76 wins
* Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games

— Must together win at least r(R) = 27 more games

: . 278427
 On average, teams in R win — = 76.25 games

e
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Reason for Elimination
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e Canteam 3 finish with most wins? W1 -0, +Wstf-w, < T,
Z ) 0'e) [ Z (w3 < G + W+
1-2 — 2
N
/o
<
~
P el
‘s
Remaining number /A»///‘ OO team Number of wins team i can
of games between game nodes have to not beat team 3
the 2 teams
nodes

 Team 3 cannot finish first & min cut of size < “all blue edges”
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Reason for Elimination
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Certificate of elimination:

R c X, w(R) = Zwi, r(R) := z Tij

)

IER I,jJER

w w
#wins of Hremaining games
nodesin R among nodesin R

Team x € X is eliminated by R if
w(R) + r(R)
R|

> Wy T Ty.
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Reason for Elimination
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Theorem: Team x is eliminated if and only if there exists a subset
R € X of the teams X such that x is eliminated by R.

Proof Idea:
* Minimum cut gives a certificate...

 If xiseliminated, max flow solution does not saturate all
outgoing edges of the source.

 Team nodes of unsaturated source-game edges are saturated

* Source side of min cut contains all teams of saturated team-dest.

edges of unsaturated source-game edges

e Set of team nodes in source-side of min cut give a certificate R
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Circulations with Demands
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Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

* The circulation problem is a feasibility rather than a maximization
problem
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Circulations with Demands: Formally

Given: Directed network G = (V/, E) with

* Edge capacitiesc, > Oforalle € E d,=2
[
* Nodedemandsd, € Rforallv eV p
— d, > 0: node needs flow and therefore is a sink .

— d, < 0: node has a supply of —d,, and is therefore a source

—

— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
 Capacity Conditions:Ve € E: 0 < f(e) <c,

 Demand Conditions: Yv € V: f(v) — f°"(v) = d,

UNI
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Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Example
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Condition on Demands
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Claim: If there exists a feasible circulation with demands d,, for

v €V, then , ho s
Z —
dv — O - oub
eV 0((\:): fm- f(v)
Proof:

C Sd, =5, (P - ) = 2,0 =, f=0

* f(e) of each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D := Z d, = z —d,,

v:d;,>0 v:d,<0
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e Add “super-source” s* and “super-sink” t* to network

t* siphons
flow out
of sinks

s” supplies
sources
with flow
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Example
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Formally...
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Reduction: Get graph G’ from graph as follows
* Nodesetof G'isV U {s*, t*}

 Edge setis E and edges
— (8%, v) forall v with d,, < 0, capacity of edge is —d,, =(d,)
— (v, t") forall v with d,, > 0, capacity of edge is d,,

Observations:

 Capacity of min s*-t* cut is at most D (e.g., the cut (s*,V U {t*})

* A feasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*,v) and (v, t*) edges.

* Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints
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Circulation with Demands
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Theorem: There is a feasible circulation with demands d,,, v € VV
on graph G if and only if there is a flow of value D on G'.

* If all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands

d,, v € V if and only if for all cuts (4, B), A 23 =
=7
z d, < c(A,B). %
VEB
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Circulation: Demands and Lower Bounds .

UNI
FREIBURG

Given: Directed network G = (V/, E) with
* Edge capacities ¢, > 0 and lower bounds 0 < ¢, < c,fore € E

* Nodedemandsd, € Rforallv eV -

— d, > 0: node needs flow and therefore is a sink
— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E - R, satisfying
* Capacity Conditions:Ve EE: | £, < f(e) < cJ

 Demand Conditions: Yv € V: f(v) — foU(v) = d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Solution ldea fo= £ + £
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 Define initial circulation fy(e) = £,
Satisfies capacity constraints: Ve € E: ¢, < f,(e) < c,

e

e Define

L= fP @) @) = ) te— ) 4

e intov e out of v

 If L, = d,, demand condition is satisfied at v by f;, otherwise,
we need to superimpose another circulation f; such that

dy = fi"(0) = [ @) = dy — Ly

* Remaining capacity of edge e: ¢, :=c, — ¥,

* We get a circulation problem with new demands d;,, new
capacities c,, and no lower bounds
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Eliminating a Lower Bound: Example
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Lower bound of 2

b

/.
N

N
s
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Reduce to Problem Without Lower Bounds _
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Graph G = (V,E):
* Capacity: Foreachedgee € E: ¥, < f(e) < c,
 Demand: For each node v € V: fi%(v) — foU(v) = d

Model lower bounds with supplies & demands:

W—=e=fe )

Flow: £,

Create Network G’ (without lower bounds):
* Foreachedgee € E: ce =c, — ¥,

 Foreach nodev € V: d’ 71 —L, L= %e" - e%,},ee

2 —
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Circulation: Demands and Lower Bounds .
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Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation in G’ (without lower bounds).

* Given circulation f inG’, f(e) = f (e) + fe is circulationin G

—
— The capacity constraints are satlsfled because [’ (e) <c,— "1,
— Demand conditions:

o = [ = ) (et @)= ) (Lt @)

eintov e out of v

=Lv+(dv_Lv)=d
= / - . . . . /
* Given circulation f in G, f'(e) = f(e) — £, is circulation in G

— The capacity constraints are satisfied because £, < f(e) < c,

—

— Demand conditions:

f’m(v) f/out(v)_ 7 (f (6) fe)— z (f (e) fe)

e intov e out of v

= dv
&= el
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Integrality
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Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:
* Graph G’ has only integral capacities and demands

* Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

* The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

* It also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.
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Matrix Rounding
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* Given: p X q matrix D = {d; ;} of real numbers
* rowisum:q; =) ;d;;, columnjsum:b; =),;d;;

* Goal: Round each d; ;, as well as a; and b; up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

* Original application: publishing census data

Example:

3.14 | 6.80 | 7.30

9.60 | 2.40 | 0.70

3.60 | 1.20

original data possible rounding
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Matrix Rounding
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Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

original data

rounding to nearest integer feasible rounding
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Reduction to Circulation
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Matrix elements and row/column sums
give a feasible circulation that satisfies

all lower bound, capacity, and demand

constraints

columns:

all demands d,, = 0
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Matrix Rounding
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Theorem: For any matrix, there exists a feasible rounding.

Proof:

* The matrix entries d; ; and the row and column sums a; and b;
give a feasible circulation for the constructed network

* Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

* Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

- gives a feasible rounding!
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