

Chapter 6 Graph Algorithms

Algorithm Theory WS 2017/18

Fabian Kuhn

Ford-Fulkerson Algorithm

Improve flow using an augmenting path as long as possible:

- 1. Initially, f(e) = 0 for all edges $e \in E$, $G_f = G$
- 2. **while** there is an augmenting s-t-path P in G_f do
- 3. Let P be an augmenting s-t-path in G_f ;
- 4. $f' \coloneqq \operatorname{augment}(f, P)$;
- 5. update f to be f';
- 6. update the residual graph G_f
- 7. **end**;

Conclusions Ford Fulkerson Algorithm

Theorem: (Max-Flow Min-Cut Theorem)

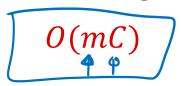
In every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a maximum flow f for which the flow f(e) of every edge e is an integer.

Strongly Polynomial Algorithm

Time of regular Ford-Fulkerson algorithm with integer capacities:



Time of algorithm with scaling parameter:

$$O(m^2 \log C)$$

- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in n?
- Always picking a shortest augmenting path leads to running time $O(m^2n)$
 - also works for arbitrary real-valued weights

Other Algorithms

 There are many other algorithms to solve the maximum flow problem, for example:

Preflow-push algorithm:

- Maintains a preflow (\forall nodes: inflow \ge outflow)
- Alg. guarantees: As soon as we have a flow, it is optimal
- Detailed discussion in 2012/13 lecture
- Running time of basic algorithm: $O(m \cdot n^2)$
- Doing steps in the "right" order: $O(n^3)$

• Current best known complexity: $O(m \cdot n)$

- For graphs with $m \ge n^{1+\epsilon}$ (for every constant $\epsilon > 0$)

- [King, Rao, Tarjan 1992/1994]
- For sparse graphs with $m \le n^{16/15-\delta}$

[Orlin, 2013]

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique

Examples:

- related network flow problems
- computation of small cuts
- computation of matchings
- computing disjoint paths
- scheduling problems
- assignment problems with some side constraints
- **–** ...

Undirected Edges and Vertex Capacities

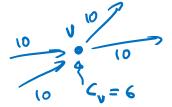
Undirected Edges:

• Undirected edge $\{u, v\}$: add edges (u, v) and (v, u) to network

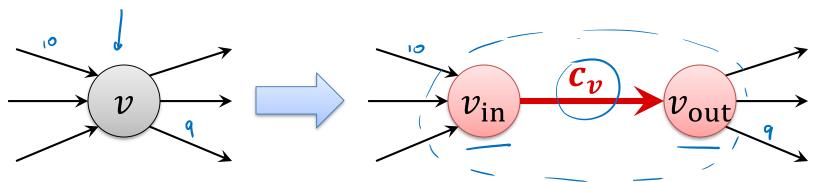
Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_v of node $v \notin \{s, t\}$:

$$f^{\rm in}(v) = f^{\rm out}(v) \le c_v$$



• Replace node v by edge $e_v = \{v_{\text{in}}, v_{\text{out}}\}$:

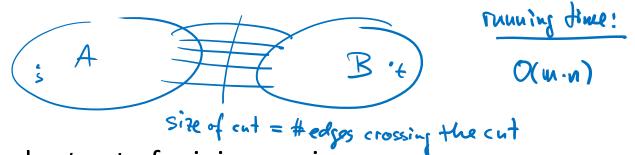


Minimum s-t Cut

Given: undirected graph G = (V, E), nodes $s, t \in V$

s-t cut: Partition (A, B) of V such that $s \in A$, $t \in B$

Size of cut (A, B): number of edges crossing the cut



Objective: find *s-t* cut of minimum size

1) make edges directed

$$\longrightarrow$$
 \rightleftharpoons

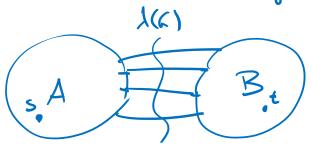
Site of cut in 6 = cap. cut in flow network

Edge Connectivity

Definition: A graph G = (V, E) is k-edge connected for an integer $k \ge 1$ if the graph $G_X = (V, E \setminus X)$ is connected for every edge set

$$X \subseteq E$$
, $|X| \le k - 1$.

need to remove = k edges to make a disconnected



edge connectivity $\lambda(G)$:

max. ξ s.t. G is ξ -edge connected

Goal: Compute edge connectivity $\lambda(G)$ of G (and edge set X of size $\lambda(G)$ that divides G into ≥ 2 parts)

- minimum set X is a minimum s-t cut for some s, $t \in V$
 - Actually for all s, t in different components of $G_X = (V, E \setminus X)$

need to call min s-t-cut als. N-1 times

• Possible algorithm: fix s and find min s-t cut for all $t \neq s$

Minimum s-t Vertex-Cut

Given: undirected graph G = (V, E), nodes $s, t \in V$

s-t vertex cut: Set $X \subseteq V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \setminus X]$ induced by $V \setminus X$

Size of vertex cut: |X|

Objective: find *s-t* vertex-cut of minimum size

- Replace undirected edge $\{u, v\}$ by (u, v) and (v, u)
- Compute max s-t flow for edge capacities ∞ and node capacities

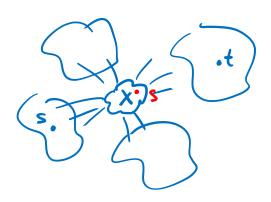
$$c_v = 1 \text{ for } v \neq s, t$$

- Replace each node v by $v_{\rm in}$ and $v_{\rm out}$:
- Min edge cut corresponds to min vertex cut in G

Vertex Connectivity

Definition: A graph G = (V, E) is k-vertex connected for an integer $k \ge 1$ if the sub-graph $G[V \setminus X]$ induced by $V \setminus X$ is connected for every edge set

$$X \subseteq V, |X| \le k-1.$$
weed to remove at least & modes to disconnect 6



Goal: Compute vertex connectivity $\kappa(G)$ of G (and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

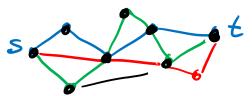
• Compute minimum s-t vertex cut for fixed s and all $t \neq s$

Edge-Disjoint Paths

Given: Graph G = (V, E) with nodes $\underline{s, t} \in V$

Goal: Find as many edge-disjoint s-t paths as possible

Solution:



• Find $\max s - t$ flow in G with edge capacities $\underline{c_e} = 1$ for all $e \in E$

Flow f induces |f| edge-disjoint paths:

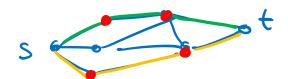
- Integral capacities \rightarrow can compute integral max flow f
- Get |f| edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Vertex-Disjoint Paths

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many internally vertex-disjoint s-t paths as possible

Solution:



• Find max s-t flow in G with node capacities $c_v = 1$ for all $v \in V$

Flow f induces |f| vertex-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| vertex-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Menger's Theorem

Theorem: (edge version)

For every graph G = (V, E) with nodes $\underline{s}, t \in V$, the size of the minimum s-t (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum s-t vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t

 Both versions can be seen as a special case of the max flow min cut theorem

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w_i	ℓ_i	r_i	NY	Balt.	T. Bay	Tor.	Bost.
New York	<u>81</u>	69	12	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	74	9	5	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Only wins/losses possible (no ties), winner: team with most wins
- Which teams can still win (as least as many wins as top team)?
- Boston is eliminated (cannot win):
 - Boston can get at most 78 wins, New York already has 81 wins
- If for some $i, j: \underline{w_i} + \underline{r_i} < w_j \rightarrow$ team i is eliminated
- Sufficient condition, but not a necessary one!

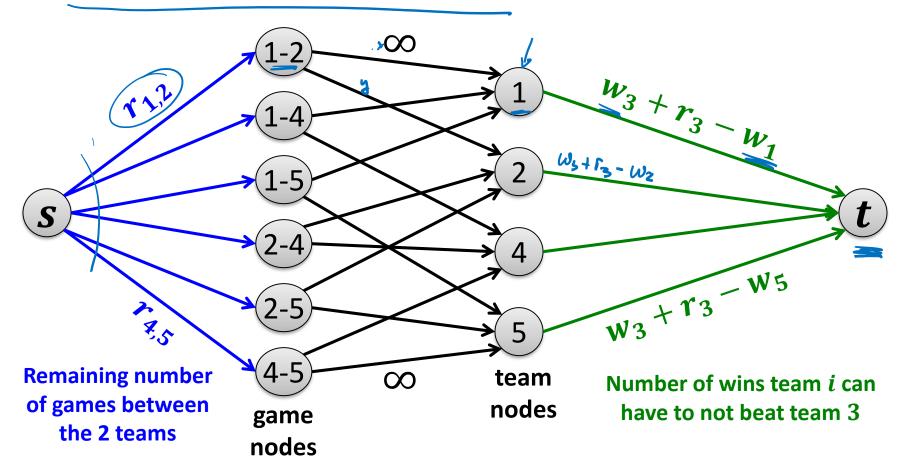
Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w_i	ℓ_i	r_i	NY	Balt.	T. Bay	Tor.	Bost.
New York	81	69	12	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	74	9	(5)	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Can Toronto still finish first?
- Toronto can get 82 > 81 wins, but:
 NY and Tampa have to play 5 more times against each other
 → if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins
- Hence: Toronto cannot finish first
- How about the others? How can we solve this in general?

Max Flow Formulation

Can team 3 finish with most wins?

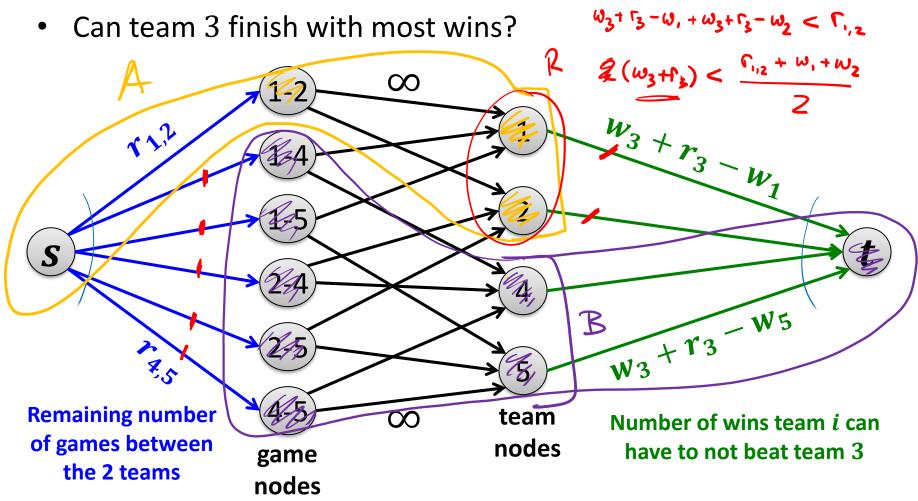


Team 3 can finish first iff all source-game edges are saturated

AL East: Aug 30, 1996

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w_i	ℓ_i	r_i	NY	Balt.	Bost.	Tor.	Detr.
New York	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2		0	0
Toronto	63	72	27	7	7	0	-	0
Detroit	49	86	27	3	4	0	0	-

- Detroit could finish with 49 + 27 = 76 wins
- Consider R = {NY, Bal, Bos, Tor}
 - Have together already won w(R) = 278 games
 - Must together win at least r(R) = 27 more games
- On average, teams in R win $\frac{278+27}{4} = 76.25$ games



Team 3 cannot finish first ⇔ min cut of size < "all blue edges"

Certificate of elimination:

$$R \subseteq X$$
, $w(R) \coloneqq \sum_{i \in R} w_i$, $r(R) \coloneqq \sum_{i,j \in R} r_{i,j}$ #wins of #remaining games nodes in R among nodes in R

Team $x \in X$ is eliminated by R if

$$\frac{w(R) + r(R)}{|R|} > w_{x} + r_{x}.$$

Theorem: Team x is eliminated if and only if there exists a subset $R \subseteq X$ of the teams X such that x is eliminated by X.

Proof Idea:

- Minimum cut gives a certificate...
- If x is eliminated, max flow solution does not saturate all outgoing edges of the source.
- Team nodes of unsaturated source-game edges are saturated
- Source side of min cut contains all teams of saturated team-dest.
 edges of unsaturated source-game edges
- Set of team nodes in source-side of min cut give a certificate R

Circulations with Demands

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands are exactly satisfied

The circulation problem is a feasibility rather than a maximization problem

Circulations with Demands: Formally

Given: Directed network G = (V, E) with

• Edge capacities $c_e > 0$ for all $e \in E$

 $d_v = 3$

• Node demands $d_v \in \mathbb{R}$ for all $v \in V$

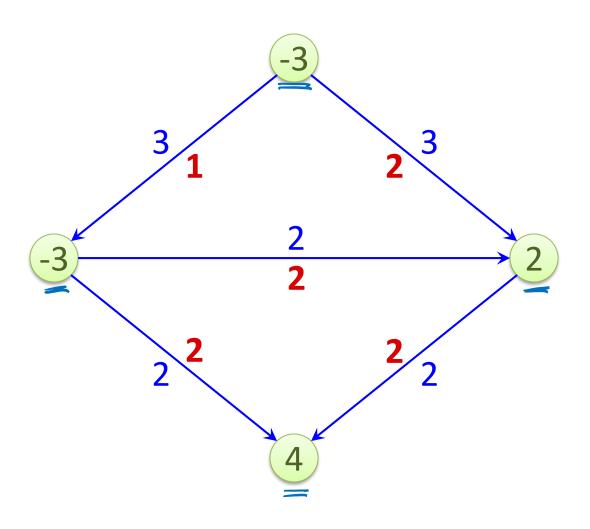
- $-d_{v}>0$: node needs flow and therefore is a sink
- $-d_{v} < 0$: node has a supply of $-d_{v}$ and is therefore a source
- $-d_{\nu}=0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E$: $0 \le f(e) \le c_e$
- Demand Conditions: $\forall v \in V$: $\underline{f^{\text{in}}(v)} \underline{f^{\text{out}}(v)} = \underline{d_v}$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Example



Condition on Demands

Claim: If there exists a feasible circulation with demands d_v for $v \in V$, then

$$\sum_{v \in V} d_v = 0.$$

$$d_{(v)} = \int_{(v)}^{\infty} d_v - \int_{(v)}^{\infty}$$

Proof:

•
$$\sum_{v} d_v = \sum_{v} \left(f^{\text{in}}(v) - f^{\text{out}}(v) \right) = \sum_{v} f^{\text{out}}(v) - \sum_{v} f^{\text{out}}(v) = 0$$

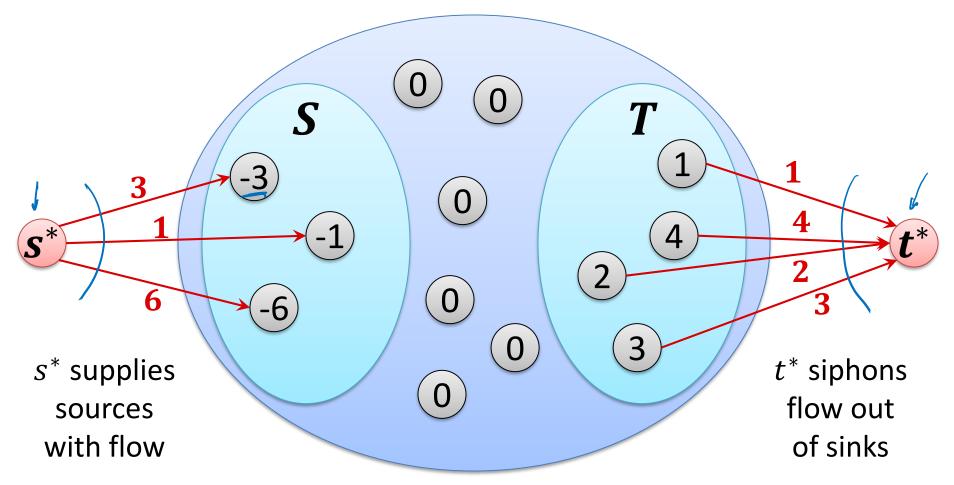
 f(e) of each edge e appears twice in the above sum with different signs → overall sum is 0

Total supply = total demand:

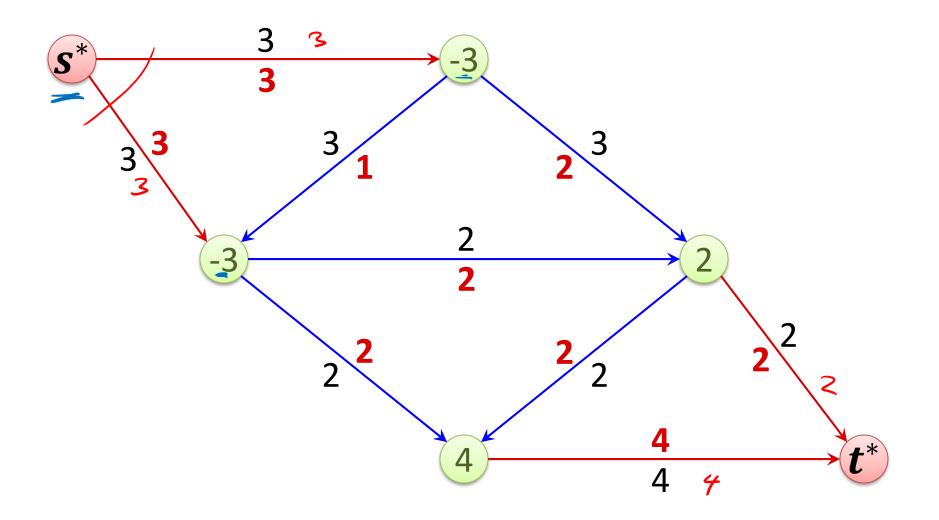
Define
$$\underline{D} \coloneqq \sum_{v:d_v>0} d_v = \sum_{v:d_v<0} -d_v$$

Reduction to Maximum Flow

• Add "super-source" s^* and "super-sink" t^* to network



Example



Formally...

Reduction: Get graph G' from graph as follows

- Node set of G' is $V \cup \{s^*, t^*\}$
- Edge set is E and edges
 - $-(s^*, v)$ for all v with $d_v < 0$, capacity of edge is $-d_v = (d_v)$
 - (v,t^*) for all v with $d_v>0$, capacity of edge is d_v

Observations:

- Capacity of min s^* - t^* cut is at most D (e.g., the cut $(s^*, V \cup \{t^*\})$
- A feasible circulation on G can be turned into a feasible flow of value D of G' by saturating all (s^*, v) and (v, t^*) edges.
- Any flow of G' of value D induces a feasible circulation on G
 - $-(s^*,v)$ and (v,t^*) edges are saturated
 - By removing these edges, we get exactly the demand constraints

Circulation with Demands

Theorem: There is a feasible circulation with demands d_v , $v \in V$ on graph G if and only if there is a flow of value D on G'.

 If all capacities and demands are integers, there is an integer circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands d_v , $v \in V$ if and only if for all cuts (A, B),

$$\sum_{v \in B} d_v \le c(A, B).$$

Circulation: Demands and Lower Bounds

Given: Directed network G = (V, E) with

- Edge capacities $c_e>0$ and lower bounds $0\leq \underline{\ell_e}\leq c_e$ for $e\in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $-d_{\nu}>0$: node needs flow and therefore is a sink
 - $-d_v < 0$: node has a supply of $-d_v$ and is therefore a source
 - $-d_{\nu}=0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E$: $\ell_e \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{\text{in}}(v) f^{\text{out}}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Solution Idea

- Define initial circulation $f_0(e) = \ell_e$ Satisfies capacity constraints: $\forall e \in E : \ell_e \leq f_0(e) \leq c_e$
- Define

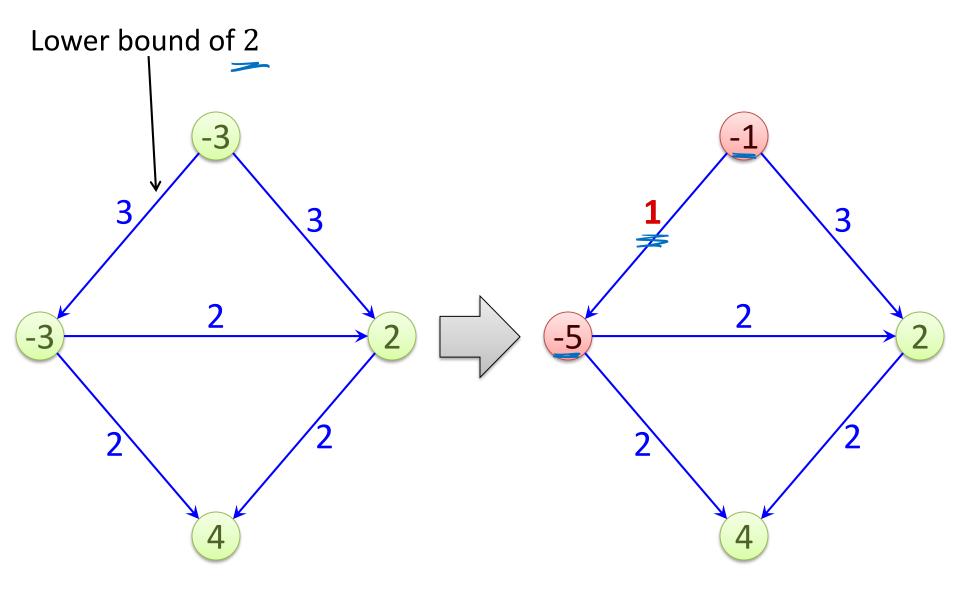
$$\underline{L_v} \coloneqq \underline{f_0^{\text{in}}(v)} - \underline{f_0^{\text{out}}(v)} = \sum_{e \text{ into } v} \ell_e - \sum_{e \text{ out of } v} \ell_e$$

• If $L_v = d_v$, demand condition is satisfied at v by f_0 , otherwise, we need to superimpose another circulation f_1 such that

$$\underline{\underline{d'_v}} \coloneqq f_1^{\text{in}}(v) - f_1^{\text{out}}(v) = \underline{\underline{d_v - L_v}}$$

- Remaining capacity of edge $e: c_e' \coloneqq c_e \ell_e$
- We get a circulation problem with new demands d_v^\prime , new capacities c_e^\prime , and no lower bounds

Eliminating a Lower Bound: Example



Reduce to Problem Without Lower Bounds

Graph G = (V, E):

- Capacity: For each edge $e \in E$: $\ell_e \le f(e) \le c_e$
- Demand: For each node $v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Model lower bounds with supplies & demands:

$$\underbrace{u} \qquad \underbrace{\ell_e \leq c_e} \qquad \underbrace{v}$$

$$\mathsf{Flow}: \ell_e$$

Create Network \underline{G}' (without lower bounds):

- For each edge $e \in E$: $\underline{c'_e} = \underline{c_e} \underline{\ell_e}$
- For each node $v \in V$: $\underline{d'_v} = \underline{d_v} \underline{L_v}$

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in G (with lower bounds) if and only if there is feasible circulation in G' (without lower bounds).

- Given circulation f' in G', $f(e) = f'(e) + \ell_e$ is circulation in G
 - The capacity constraints are satisfied because $f'(e) \leq c_e \ell_e$
 - Demand conditions:

$$f^{\text{in}}(v) - f^{\text{out}}(v) = \sum_{e \text{ into } v} (\ell_e + f'(e)) - \sum_{e \text{ out of } v} (\ell_e + f'(e))$$
$$= L_v + (d_v - L_v) = d_v$$

- Given circulation f in G, $f'(e) = f(e) \ell_e$ is circulation in G'
 - The capacity constraints are satisfied because $\ell_e \leq f(e) \leq c_e$
 - Demand conditions:

$$\underline{f'^{\text{in}}(v) - f'^{\text{out}}(v)} = \sum_{e \text{ into } v} (f(e) - \ell_e) - \sum_{e \text{ out of } v} (f(e) - \ell_e)$$
$$= d_v - L_v$$

Integrality

Theorem: Consider a circulation problem with integral capacities, flow lower bounds, and node demands. If the problem is feasible, then it also has an integral solution.

Proof:

- Graph G' has only integral capacities and demands
- Thus, the flow network used in the reduction to solve circulation with demands and no lower bounds has only integral capacities
- The theorem now follows because a max flow problem with integral capacities also has an optimal integral solution
- It also follows that with the max flow algorithms we studied,
 we get an integral feasible circulation solution.

Matrix Rounding

- Given: $p \times q$ matrix $D = \{d_{i,j}\}$ of real numbers
- row i sum: $a_i = \sum_j d_{i,j}$, column j sum: $b_j = \sum_i d_{i,j}$
- Goal: Round each $d_{i,j}$, as well as a_i and b_j up or down to the next integer so that the sum of rounded elements in each row (column) equals the rounded row (column) sum
- Original application: publishing census data

Example:

3.14	6.80	7.30	17.24
9.60	2.40	0.70	12.70
3.60	1.20	6.50	11.30
16.34	10.40	14.50	

3	7	7	17
10	2	1	13
3	1	7	11
16	10	15	

original data

possible rounding

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn't work

0.35	0.35	0.35	1.05
0.55	0.55	0.55	1.65
0.90	0.90	0.90	

original data

0	0	0	0
1	1	1	3
1	1	1	

rounding to nearest integer	rol	unding	to	nearest	integer
-----------------------------	-----	--------	----	---------	---------

0	0	1	1
1	1	0	2
1	1	1	

feasible rounding

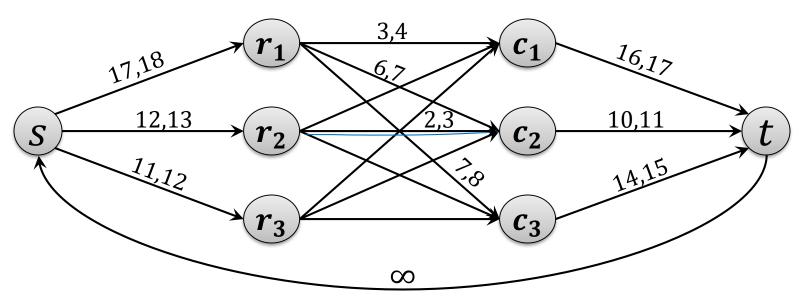
Reduction to Circulation

I^{-}				
	3.14	6.80	7.30	17.24
	9.60	2.40	0.70	12.70
	3.60	1.20	6.50	11.30
	16.34	10.40	14.50	

Matrix elements and row/column sums give a feasible circulation that satisfies all lower bound, capacity, and demand constraints

rows:

columns:



all demands $d_v = 0$

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

- The matrix entries $d_{i,j}$ and the row and column sums a_i and b_j give a feasible circulation for the constructed network
- Every feasible circulation gives matrix entries with corresponding row and column sums (follows from demand constraints)
- Because all demands, capacities, and flow lower bounds are integral, there is an integral solution to the circulation problem
 - → gives a feasible rounding!