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Matching
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Gifts-Children Graph

• Which child likes which gift can be represented by a graph
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Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size Τ𝑛 2 (every node is matched)



Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Bipartite Graph

Definition: A graph 𝐺 = 𝑉, 𝐸 is called bipartite iff its node set 
can be partitioned into two parts 𝑉 = 𝑉1 ∪ 𝑉2 such that for each 
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉1 = 1.

• Thus, edges are only between the two parts

⋅

𝑉1 𝑉2
𝐸
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Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching
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Reducing to Maximum Flow

• Like edge-disjoint paths…

all capacities are 𝟏

𝒔 𝒕
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Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the 
constructed graph induces a maximum bipartite matching of 𝐺.

Proof:

1. An integer flow 𝑓 of value |𝑓| induces a matching of size |𝑓|
– Left nodes (gifts) have incoming capacity 1

– Right nodes (children) have outgoing capacity 1

– Left and right nodes are incident to ≤ 1 edge 𝑒 of 𝐺 with 𝑓 𝑒 = 1

2. A matching of size 𝑘 implies a flow 𝑓 of value 𝑓 = 𝑘
– For each edge {𝑢, 𝑣} of the matching:

𝑓 𝑠, 𝑢 = 𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑡 = 1

– All other flow values are 0
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Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be 
computed in time 𝑂(𝑚 ⋅ 𝑛). 
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Perfect Matching?

• There can only be a perfect matching if both sides of the 
partition have size Τ𝑛 2.

• There is no perfect matching, iff there is an 𝑠-𝑡 cut of
size < Τ𝑛 2 in the flow network.

ൗ𝑛 2 ൗ𝑛 2

𝑡𝑠
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𝑠-𝑡 Cuts

Partition (𝐴, 𝐵) of node set such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• If 𝑣𝑖 ∈ 𝐴: edge (𝑣𝑖 , 𝑡) is in cut (𝐴, 𝐵)

• If 𝑢𝑖 ∈ 𝐵: edge (𝑠, 𝑢𝑖) is in cut (𝐴, 𝐵)

• Otherwise (if 𝑢𝑖 ∈ 𝐴, 𝑣𝑖 ∈ 𝐵), all edges from 𝑢𝑖 to some 𝑣𝑗 ∈

𝐵 are in cut (𝐴, 𝐵)

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑈 𝑉

𝑡𝑠
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

1. Assume there is 𝑈′ for which 𝑁 𝑈′ < |U′|:

𝑡𝑠

𝑼′ 𝑵(𝑼′)
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

2. Assume that there is a cut (𝐴, 𝐵) of capacity < Τ𝑛 2

𝑡𝑠

𝑼′

𝒙

𝒚
𝒛

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < 𝑛

2. Assume that there is a cut (𝐴, 𝐵) of capacity < 𝑛

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙
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What About General Graphs

• Can we efficiently compute a maximum matching if 𝐺 is not 
bipartite?

• How good is a maximal matching?
– A matching that cannot be extended…

• Theorem: The size of any maximal matching is at least half the 
size of a maximum matching.

– See next exercise sheet!
(even for a natural generalization to the weighted version of the problem)
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Augmenting Paths

Consider a matching 𝑀 of a graph 𝐺 = (𝑉, 𝐸):

• A node 𝑣 ∈ 𝑉 is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free 
node and visits edges in 𝐸 ∖ 𝑀 and edges in 𝑀 alternatingly.

• Matching 𝑀 can be improved using an augmenting path by 
switching the role of each edge along the path

free nodes

alternating path
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Augmenting Paths

Theorem: A matching 𝑀 of 𝐺 = (𝑉, 𝐸) is maximum if and only if 
there is no augmenting path.

Proof:

• Consider non-max. matching 𝑀 and max. matching 𝑀∗ and define

𝐹 ≔ 𝑀 ∖𝑀∗, 𝐹∗ ≔ 𝑀∗ ∖ 𝑀

• Note that 𝐹 ∩ 𝐹∗ = ∅ and 𝐹 < |𝐹∗|

• Each node 𝑣 ∈ 𝑉 is incident to at most one edge in both 𝐹 and 𝐹∗

• 𝐹 ∪ 𝐹∗ induces even cycles and paths
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Finding Augmenting Paths

free nodes

augmenting path

odd cycle
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Blossoms

• If we find an odd cycle…

free node 𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

blossom

𝑏

𝑐

𝑑

𝑎

𝑒
stem

𝑓

𝑢

𝑣′𝑏

𝑐

𝑑

𝑎

𝑒

contracted blossom

contract 
blossom

Graph 𝑮

Graph 𝑮′

root

Matching 𝑴

𝒆 𝒆′

Matching 𝑴′ = 𝑴 ∖ 𝒆, 𝒆′

is a matching of 𝑮′.



Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′
has an augmenting path w.r.t. matching 𝑀′

Also: The matching 𝑀 can be computed efficiently from 𝑀′.

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

𝑎

𝑏

𝑓′ 𝑓

𝑢

𝑎

𝑏

𝑓′

𝑣′

Note: If stem has length 0,
root 𝑣 of blossom is free
and thus also the node 𝑣′

is free in 𝐺′.
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Edmond’s Blossom Algorithm

Algorithm Sketch:

1. Build a tree for each free node

2. Starting from an explored node 𝑢 at even distance from a free 
node 𝑓 in the tree of 𝑓, explore some unexplored edge {𝑢, 𝑣}:

1. If 𝑣 is an unexplored node, 𝑣 is matched to some neighbor 𝑤:
add 𝑤 to the tree (𝑤 is now explored)

2. If 𝑣 is explored and in the same tree:
at odd distance from root  ignore and move on
at even distance from root  blossom found

3. If 𝑣 is explored and in another tree
at odd distance from root  ignore and move on
at even distance from root  augmenting path found
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Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time 𝑂 𝑚𝑛2 .
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Maximum Weight Bipartite Matching

• Let’s again go back to bipartite graphs…

Given: Bipartite graph 𝐺 = 𝑈 ሶ∪ 𝑉, 𝐸 with edge weights 𝑐𝑒 ≥ 0

Goal: Find a matching 𝑀 of maximum total weight

𝑈 𝑉
𝐸

𝑐𝑒 ≥ 0
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Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is equivalent to finding a 
minimum weight perfect matching in a complete bipartite graph.

1. Turn into maximum weight perfect matching

• add dummy nodes to get two equal-sized sides

• add edges of weight 0 to make graph complete bipartite

2. Replace weights: 𝑐𝑒
′ ≔ max

𝑓
𝑐𝑓 − 𝑐𝑒
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As an Integer Linear Program

• We can formulate the problem as an integer linear program

Var. 𝑥𝑢𝑣 for every edge (𝑢, 𝑣) ∈ 𝑈 × 𝑉 to encode matching 𝑀:

𝑥𝑢𝑣 = ቊ
1, if 𝑢, 𝑣 ∈ 𝑀
0, if 𝑢, 𝑣 ∉ 𝑀

Minimum Weight Perfect Matching
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Linear Programming (LP) Relaxation

Linear Program (LP)

• Continuous optimization problem on multiple variables with a 
linear objective function and a set of linear side constraints

LP Relaxation of Minimum Weight Perfect Matching 

• Weight 𝑐𝑢𝑣 & variable 𝑥𝑢𝑣 for ever edge (𝑢, 𝑣) ∈ 𝑈 × 𝑉

min ෍

𝑢,𝑣 ∈𝑈×𝑉

𝑐𝑢𝑣 ⋅ 𝑥𝑢𝑣

s. t. 𝑎𝑏
𝑐

∀𝑢 ∈ 𝑈: ෍

𝑣∈𝑉

𝑥𝑢𝑣 = 1,

∀𝑣 ∈ 𝑉: ෍

𝑢∈𝑈

𝑥𝑢𝑣 = 1

∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉: 𝑥𝑢𝑣 ≥ 0
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Dual Problem

• Every linear program has a dual linear program
– The dual of a minimization problem is a maximization problem

– Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

• Assign a variable 𝑎𝑢 ≥ 0 to each node 𝑢 ∈ 𝑈
and a variable 𝑏𝑣 ≥ 0 to each node 𝑣 ∈ 𝑉

• Condition: for every edge (𝒖, 𝒗) ∈ 𝑼 × 𝑽:    𝒂𝒖 + 𝒃𝒗 ≤ 𝒄𝒖𝒗

• Given perfect matching 𝑀:

෍

𝑢,𝑣 ∈𝑀

𝑐𝑢𝑣 ≥ ෍

𝑢∈𝑈

𝑎𝑢 +෍

𝑣∈𝑉

𝑏𝑣
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Dual Linear Program

• Variables 𝑎𝑢 ≥ 0 for 𝑢 ∈ 𝑈 and 𝑏𝑣 ≥ 0 for 𝑣 ∈ 𝑉

max෍

𝑢∈𝑈

𝑎𝑢 +෍

𝑣∈𝑉

𝑏𝑣

𝑠. 𝑡.
∀𝑢 ∈ 𝑈, ∀𝑣 ∈ 𝑉: 𝑎𝑢 + 𝑏𝑣 ≤ 𝑐𝑢𝑣

• For every perfect matching 𝑀:

෍

𝑢,𝑣 ∈𝑀

𝑐𝑢𝑣 ≥ ෍

𝑢∈𝑈

𝑎𝑢 +෍

𝑣∈𝑉

𝑏𝑣
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Complementary Slackness

• A perfect matching 𝑀 is optimal if

෍

𝑢,𝑣 ∈𝑀

𝑐𝑢𝑣 = ෍

𝑢∈𝑈

𝑎𝑢 +෍

𝑣∈𝑉

𝑏𝑣

• In that case, for every 𝑢, 𝑣 ∈ 𝑀

𝒘𝒖𝒗 ≔ 𝑐𝑢𝑣 − 𝑎𝑢 − 𝑏𝑣 = 0

– In this case, 𝑀 is also an optimal solution to the LP relaxation of the 
problem

– Every optimal LP solution can be characterized by such a property, 
which is then generally referred to as complementary slackness

• Goal: Find a dual solution 𝑎𝑢, 𝑏𝑣 and a perfect matching such 
that the complementary slackness condition is satisfied!
– i.e., for every matching edge 𝑢, 𝑣 , we want 𝑤𝑢𝑣 = 0

– We then know that the matching is optimal!
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Algorithm Overview

• Start with any feasible dual solution 𝑎𝑢, 𝑏𝑣
– i.e., solution satisfies that for all 𝑢, 𝑣 : 𝑐𝑢𝑣 ≥ 𝑎𝑢 + 𝑏𝑣

• Let 𝐸0 be the edges for which 𝑤𝑢𝑣 = 0
– Recall that 𝑤𝑢𝑣 = 𝑐𝑢𝑣 − 𝑎𝑢 − 𝑏𝑣

• Compute maximum cardinality matching 𝑀 of 𝐸0

• All edges 𝑢, 𝑣 of 𝑀 satisfy 𝑤𝑢𝑣 = 0
– Complementary slackness if satisfied

– If 𝑀 is a perfect matching, we are done

• If 𝑀 is not a perfect matching, dual solution can be improved
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Marked Nodes

Define set of marked nodes 𝑳:

• Set of nodes which can be reached on alternating paths on 
edges in 𝐸0 starting from unmatched nodes in 𝑈

edges 𝑬𝟎 with 𝒘𝒖𝒗 = 𝟎

optimal matching 𝑴

𝑳𝟎: unmatched nodes in 𝑼

𝑳: all nodes that can be reached
on alternating paths starting
from 𝑳𝟎
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Marked Nodes

Define set of marked nodes 𝑳:

• Set of nodes which can be reached on alternating paths on 
edges in 𝐸0 starting from unmatched nodes in 𝑈

edges 𝑬𝟎 with 𝒘𝒖𝒗 = 𝟎

optimal matching 𝑴

𝑳𝟎: unmatched nodes in 𝑼

𝑳: all nodes that can be reached
on alternating paths starting
from 𝑳𝟎
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Marked Nodes – Vertex Cover

Lemma:

a) There are no 𝐸0-edges between 𝑈 ∩ 𝐿 and 𝑉 ∖ 𝐿

b) The set 𝑈 ∖ 𝐿 ∪ 𝑉 ∩ 𝐿 is a vertex cover of size 𝑀
of the graph induced by 𝐸0



Algorithm Theory, WS 2017/18 Fabian Kuhn 34

Improved Dual Solution

Recall: all edges 𝑢, 𝑣 between 𝑈 ∩ 𝐿 and 𝑉 ∖ 𝐿 have 𝑤𝑢𝑣 > 0

New dual solution:
𝛿 ≔ min

𝑢∈𝑈∩𝐿, 𝑣∈𝑉\L
𝑤𝑢𝑣

𝑎𝑢
′ ≔ ቊ

𝑎𝑢, if 𝑢 ∈ 𝑈\L
𝑎𝑢 + 𝛿, if 𝑢 ∈ 𝑈 ∩ 𝐿

𝑏𝑣
′ ≔ ቊ

𝑏𝑣 , if 𝑣 ∈ 𝑉\L
𝑎𝑣 − 𝛿, if 𝑣 ∈ 𝑉 ∩ 𝐿

Claim: New dual solution is feasible (all 𝑤𝑢𝑣 remain ≥ 0)
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Improved Dual Solution

Lemma: Obj. value of the dual solution grows by 𝛿
𝑛

2
− 𝑀 .

Proof:

𝛿 ≔ min
𝑢∈𝑈∩𝐿, 𝑣∈𝑉\L

𝑤𝑢𝑣 , 𝑎𝑢
′ ≔ ቊ

𝑎𝑢, if 𝑢 ∈ 𝑈\L
𝑎𝑢 + 𝛿, if 𝑢 ∈ 𝑈 ∩ 𝐿

, 𝑏𝑣
′≔ ቊ

𝑏𝑣 , if 𝑣 ∈ 𝑉\L
𝑎𝑣 − 𝛿, if 𝑣 ∈ 𝑉 ∩ 𝐿


