Chapter 6
Graph Algorithms

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI

FREIBURG

|
- [gt:[EP-F]
"ZD

Matching

Fabian Kuhn

Algorithm Theory, WS 2017/18

Gifts-Children Graph

UNI

FREIBURG

* Which child likes which gift can be represented by a graph

il

Algorithm Theory, WS 2017/18 Fabian Kuhn

Matching

|
FRE:BURG

UNI

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size */, (every node is matched)

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

UNI
f

FREIBURG

Bipartite Graph

Definition: A graph G = (V/, E) is called bipartite iff its node set
can be partitioned into two parts IV = V; U V, such that for each
edge {u,v} € E,

Hu,v}n V| =1.

* Thus, edges are only between the two parts

O

E
Vi V

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

|
IBURG

Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching

Algorithm Theory, WS 2017/18 Fabian Kuhn

Reducing to Maximum Flow

UNI

FREIBURG

* Like edge-disjoint paths...

all capacities are 1

Algorithm Theory, WS 2017/18 Fabian Kuhn

Reducing to Maximum Flow

UNI

FREIBURG

Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of G.

Proof:

1. Aninteger flow f of value |f| induces a matching of size |f|
— Left nodes (gifts) have incoming capacity 1
— Right nodes (children) have outgoing capacity 1
— Left and right nodes are incident to < 1 edge e of G with f(e) =1

2. A matching of size k implies a flow f of value |f| = k
— For each edge {u, v} of the matching:

f((sw) = f(wv) = f((w,1) =1

— All other flow values are 0

Algorithm Theory, WS 2017/18 Fabian Kuhn

Running Time of Max. Bipartite Matching _

UNI
FREIBURG

Theorem: A maximum matching of a bipartite graph can be
computed in time O(m - n).

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Perfect Matching?

UNI

FREIBURG

 There can only be a perfect matching if both sides of the
partition have size /,.

* There is no perfect matching, iff there is an s-t cut of
size < "/, in the flow network.

Algorithm Theory, WS 2017/18 Fabian Kuhn

10

s-t Cuts

|
FRE:BURG

UNI

Partition (4, B) of node set suchthats € Aandt € B
 Ifv; € A:edge (v;,t)isincut (4,B)
 Ifu; € B:edge (s,u;)isincut (4, B)

* Otherwise (if u; € A, v; € B), all edges from u; to some v; €
B areincut (4,B)

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Hall’'s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph G = (U U V, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U")| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
1. Assume there is U’ for which [N(U")| < |U’|:

U’ N(U’)

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

UNI

Hall’'s Marriage Theorem

FREIBURG

Theorem: A bipartite graph G = (U U V, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U")| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
2. Assume that there is a cut (4, B) of capacity < n/2

, n
NU)<y+ @ = © y
Z
=7 -~ -~
n
(5] O lx+y+z<=C" 0
- 20~

N0 -

Algorithm Theory, WS 2017/18 ‘ Fabian Kuhn ‘ 13

Hall’'s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph G = (U U V, E) for which |U| = |V|
has a perfect matching if and only if
vU c U:|INWU")| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.
Proof: No perfect matching & some s-t cut has capacity < n

2. Assume that thereis a cut (4, B) of capacity < n
') =5
=——X
2

INU)|<y+z
n

X+y+z<
yTzsyg

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

What About General Graphs

UNI
FREIBURG

* Can we efficiently compute a maximum matching if G is not
bipartite?

* How good is a maximal matching?

— A matching that cannot be extended...

 Theorem: The size of any maximal matching is at least half the
size of a maximum matching.

— See next exercise sheet!
(even for a natural generalization to the weighted version of the problem)

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

UNI

Augmenting Paths

FREIBURG

Consider a matching M of a graph ¢ = (V,E):
* Anodev €V iscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

* Matching M can be improved using an augmenting path by
switching the role of each edge along the path

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

UNI

Augmenting Paths

FREIBURG

Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path.

Proof:
* Consider non-max. matching M and max. matching M* and define
F:=M\M~, F*:=M"\M

* Notethat FNF*=@and |F| < |F*|
 Each node v € V isincident to at most one edge in both F and F~
« F U F~”induces even cycles and paths

O e e)

O e e e)

O e e e)

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Finding Augmenting Paths

FREIBURG

2
=
free nodes
/7 R
LAV augmenting path
,/ ,z’
e
,/
odd cycle
Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Blossoms

UNI
FREIBURG

* If we find an odd cycle...

free node () f
Graph G "
S ®
Matching M 3
contract
blossom @\
.contracted blossom

N

Graph G’

Matching M’ = M \ {e, e’}
is a matching of G'.

blossom
Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Contracting Blossoms

UNI
f

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G’
has an augmenting path w.r.t. matching M’

i

{

Note: If stem has length 0,
root v of blossom is free
and thus also the node v’
is free in G'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

UNI

Edmond’s Blossom Algorithm

FREIBURG

Algorithm Sketch:
1. Build a tree for each free node

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

1. Ifvisanunexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:
at odd distance from root - ignore and move on
at even distance from root = blossom found

3. Ifvisexplored andin another tree
at odd distance from root - ignore and move on
at even distance from root - augmenting path found

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Running Time

Finding a Blossom: Repeat on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time O (imn?).

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Maximum Weight Bipartite Matching

UNI
FREIBURG

* Let’s again go back to bipartite graphs...

Given: Bipartite graph G = (U U V, E) with edge weights c, = 0
Goal: Find a matching M of maximum total weight

C, = 0

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Minimum Weight Perfect Matching

UNI
f

FREIBURG

Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turninto maximum weight perfect matching
. add dummy nodes to get two equal-sized sides
. add edges of weight 0 to make graph complete bipartite

2. Replace weights: ¢, = m}gx{cf} — Ce

4
?:

RS S
A‘\’M’v >
S L

|
\
N
0
(
/

é
\
/
)"1
\

\
\
\
)

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

As an Integer Linear Program

UNI
f

FREIBURG

* We can formulate the problem as an integer linear program

Var. x,,,, for every edge (u,v) € U X V to encode matching M:

v = 1, if{fu,v} eM
uw o, if {u,v} & M

Minimum Weight Perfect Matching

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

UNI
f

FREIBURG

Linear Programming (LP) Relaxation

Linear Program (LP)

* Continuous optimization problem on multiple variables with a
linear objective function and a set of linear side constraints

LP Relaxation of Minimum Weight Perfect Matching
* Weight ¢, & variable x,,,, for ever edge (u,v) € U XV

min z Cuv * Xuv

(u,v)EUXV
S. t.
Yu € U: quv =1,
VeV
Vv eV: Z Xyp = 1
ueu

vueUVvVveV: x,, =0

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Dual Problem

UNI

FREIBURG

* Every linear program has a dual linear program
— The dual of a minimization problem is a maximization problem
— Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

* Assignavariable a, = 0toeachnodeu € U
and a variable b, = 0toeachnodev eV

* Condition: for every edge (u,v) e U XV: a, + b, < ¢y,

* Given perfect matching M:

z CuvZZau+va

(u,v)eEM ueu VEV

Algorithm Theory, WS 2017/18 Fabian Kuhn

27

Dual Linear Program

UNI

FREIBURG

* Variablesa, = 0forueUandb, =0forvel

maxz au+2bv

ueu vev
S.t.

vueU,vveV: a, + b, < cyy

* For every perfect matching M:

Z cuvziau+2bv

(u,v)EM uevu VEV

Algorithm Theory, WS 2017/18 Fabian Kuhn

28

Complementary Slackness

UNI

FREIBURG

* A perfect matching M is optimal if

Z cuv=2au+2bv

(u,v)eEM ueu VEV

* Inthat case, for every (u,v) € M
Wyp = Cyp — Qy — by =0

— In this case, M is also an optimal solution to the LP relaxation of the
problem

— Every optimal LP solution can be characterized by such a property,
which is then generally referred to as complementary slackness

* Goal: Find a dual solution a,, b,, and a perfect matching such
that the complementary slackness condition is satisfied!
— i.e., for every matching edge (u, v), we want w,,, = 0
— We then know that the matching is optimal!

Algorithm Theory, WS 2017/18 Fabian Kuhn

29

UNI

Algorithm Overview

FREIBURG

Start with any feasible dual solution a,, b,

— i.e., solution satisfies that for all (u, v): ¢y, = a, + b,

Let Ey be the edges for which w,,, = 0

— Recall that wy, = ¢y, — a, — by,

* Compute maximum cardinality matching M of E|,

All edges (u, v) of M satisfy w,,, = 0
— Complementary slackness if satisfied
— If M is a perfect matching, we are done

If M is not a perfect matching, dual solution can be improved

Algorithm Theory, WS 2017/18 Fabian Kuhn 30

Marked Nodes

UNI
f

FREIBURG

Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O

edges E, withw,, = 0

optimal matching M

Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,

O
O

Algorithm Theory, WS 2017/18 Fabian Kuhn 31

Marked Nodes

UNI
f

FREIBURG

Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O edges Ey withw,, = 0

optimal matching M
. Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,

O
O

Algorithm Theory, WS 2017/18 Fabian Kuhn 32

Marked Nodes — Vertex Cover

UNI

FREIBURG

Lemma:
a) There are no Ey-edges betweenU N Land V' \ L

b) Theset (U\L)U (V NL)isavertex cover of size |M|
of the graph induced by E,

Algorithm Theory, WS 2017/18 Fabian Kuhn

33

Improved Dual Solution

|
FRE:BURG

UNI

Recall: all edges (u, v) between U N L and V \ L have w,,, > 0

New dual solution:

0= ol W)

;L a,, ifu € U\L
au‘_{au+5, ifueUnlL
" ._{ b, if v e V\L

v la,—68, ifvevnl

Claim: New dual solution is feasible (all wy,,, remain = 0)

Algorithm Theory, WS 2017/18 Fabian Kuhn

34

FREIBURG

Improved Dual Solution

.
Lemma: Obj. value of the dual solution grows by & (g — IMI).
Proof:
0= i d =t N e

Algorithm Theory, WS 2017/18 Fabian Kuhn 35

