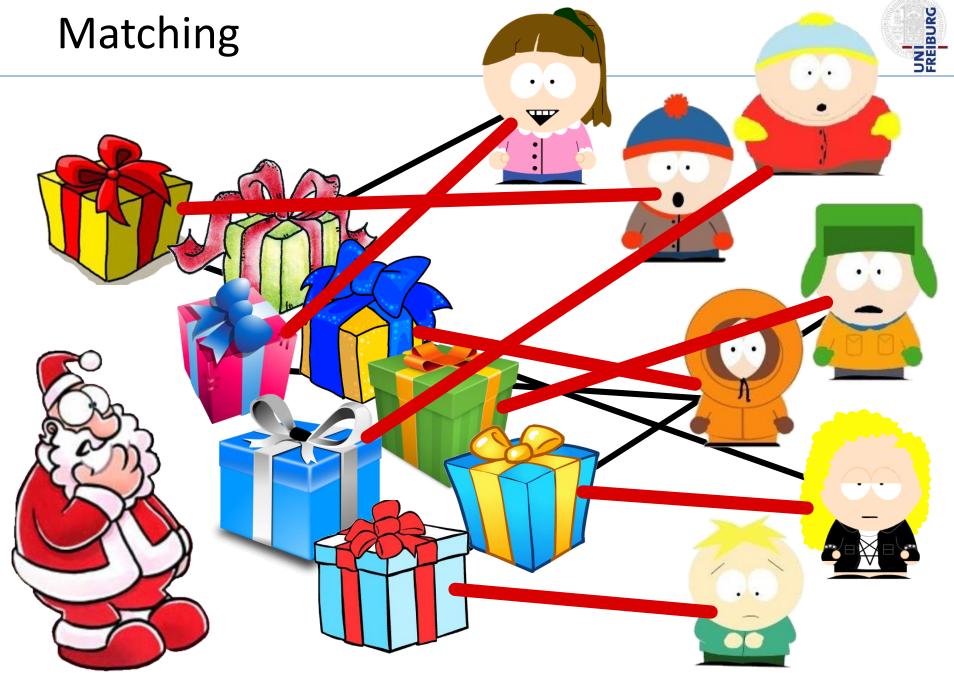


Chapter 6 Graph Algorithms

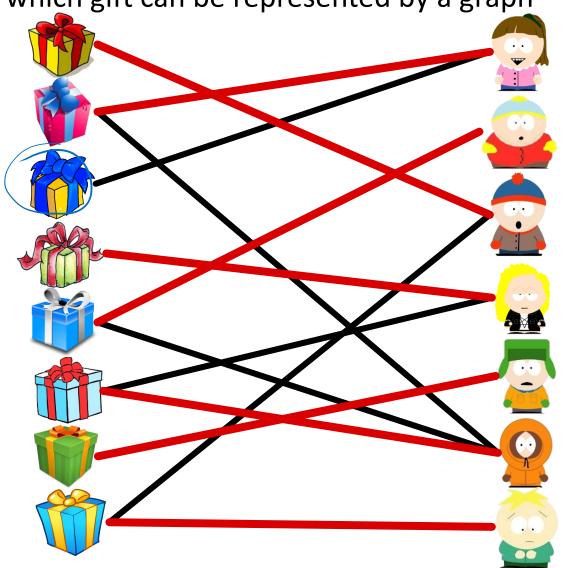
Algorithm Theory WS 2017/18

Fabian Kuhn



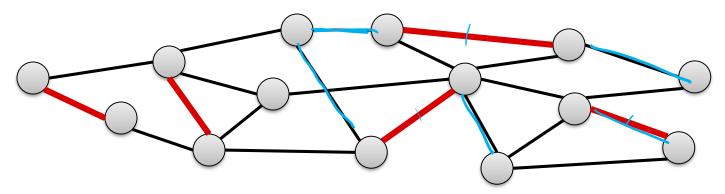
Gifts-Children Graph

• Which child likes which gift can be represented by a graph



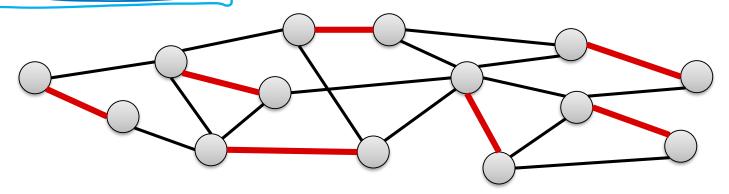
Matching

Matching: Set of pairwise non-incident edges



Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size



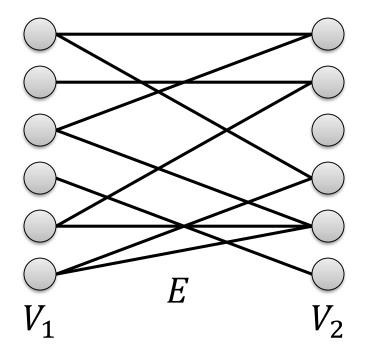
Perfect Matching: Matching of size $\frac{n}{2}$ (every node is matched)

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

$$|\{u,v\} \cap V_1| = 1.$$

Thus, edges are only between the two parts



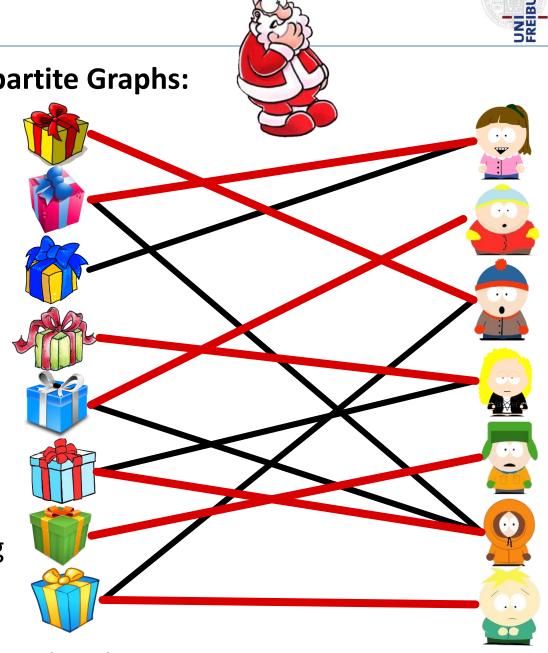
Santa's Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift iff there is a matching of size #children

Clearly, every matching is at most as big

If #children = #gifts, there is a solution iff there is a perfect matching



Reducing to Maximum Flow

Like edge-disjoint paths...

all capacities are 1

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the constructed graph induces a maximum bipartite matching of G.

Proof:

- 1. An integer flow f of value |f| induces a matching of size |f|
 - Left nodes (gifts) have incoming capacity 1
 - Right nodes (children) have outgoing capacity 1
 - Left and right nodes are incident to ≤ 1 edge e of G with f(e) = 1
- 2. A matching of size k implies a flow f of value |f| = k
 - For each edge $\{u, v\}$ of the matching:

$$f((s,u)) = f((u,v)) = f((v,t)) = 1$$

All other flow values are 0

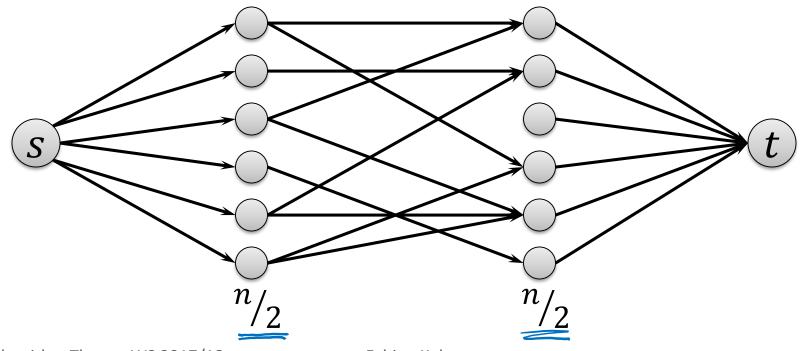
Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be computed in time $O(m \cdot n)$.

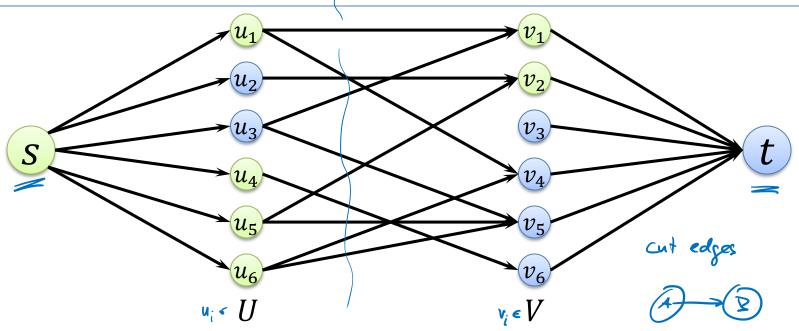
$$(M \cdot C) = (M \cdot n)$$

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size n/2.
- There is no perfect matching, iff there is an s-t cut of size < n/2 in the flow network.



s-t Cuts



Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_i \in A$: edge (v_i, t) is in cut (A, B)
- If $u_i \in B$: edge (s, u_i) is in cut (A, B)
- Otherwise (if $u_i \in A$, $v_i \in B$), all edges from u_i to some $v_j \in B$ are in cut (A, B)

Hall's Marriage Theorem

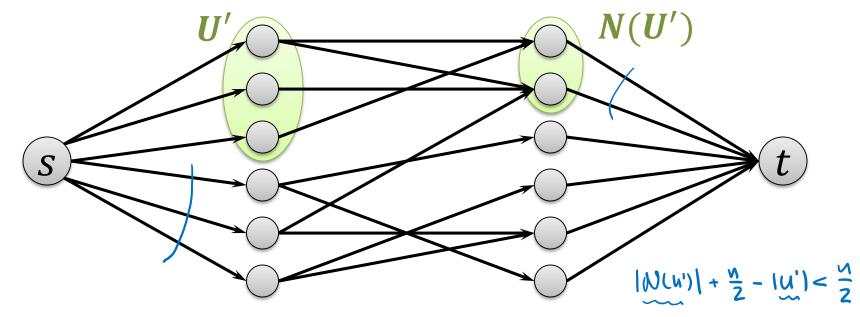
Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

1. Assume there is U' for which |N(U')| < |U'|:



Hall's Marriage Theorem

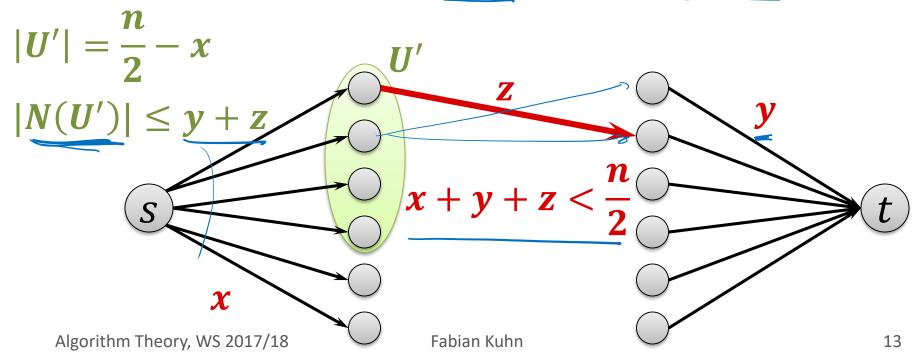
Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

2. Assume that there is a cut (A, B) of capacity $\leq n/2$



Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n

2. Assume that there is a cut (A, B) of capacity < n

$$|U'| = \frac{n}{2} - x$$

$$|N(U')| \le y + z$$

$$|x + y + z| < \frac{n}{2}$$

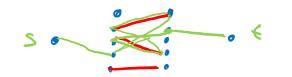
$$|X'| = |N(u')|$$

$$|X'| = |U'|$$

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
 - A matching that cannot be extended...
- **Theorem:** The size of any maximal matching is at least half the size of a maximum matching.
 - See next exercise sheet!
 (even for a natural generalization to the weighted version of the problem)

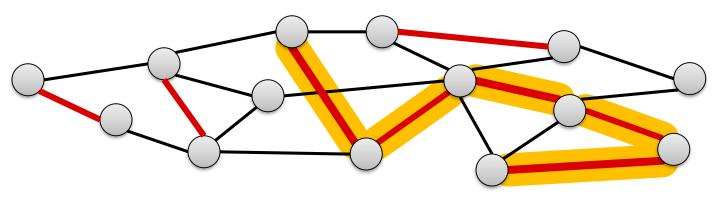
Augmenting Paths



Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.



alternating path

 Matching M can be improved using an augmenting path by switching the role of each edge along the path

Augmenting Paths

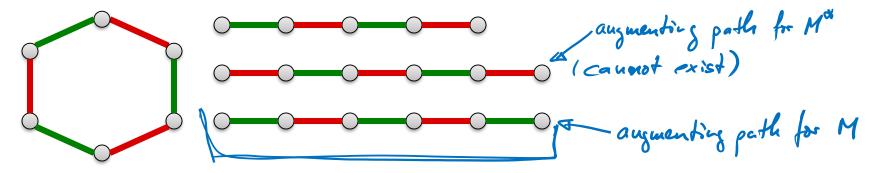
Theorem: A matching \underline{M} of G = (V, E) is maximum if and only if there is no augmenting path.

Proof:

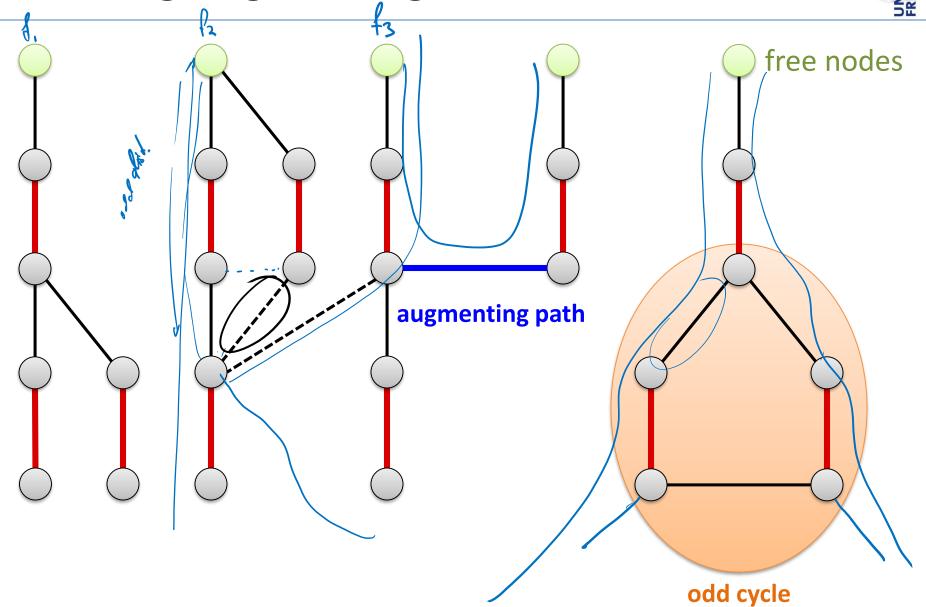
• Consider non-max. matching M and max. matching \underline{M}^* and define

$$F \coloneqq \underline{M} \setminus \underline{M}^*, \qquad F^* \coloneqq \underline{M}^* \setminus \underline{M}$$

- Note that $F \cap F^* = \emptyset$ and $|F| < |F^*|$
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- $F \cup F^*$ induces even cycles and paths

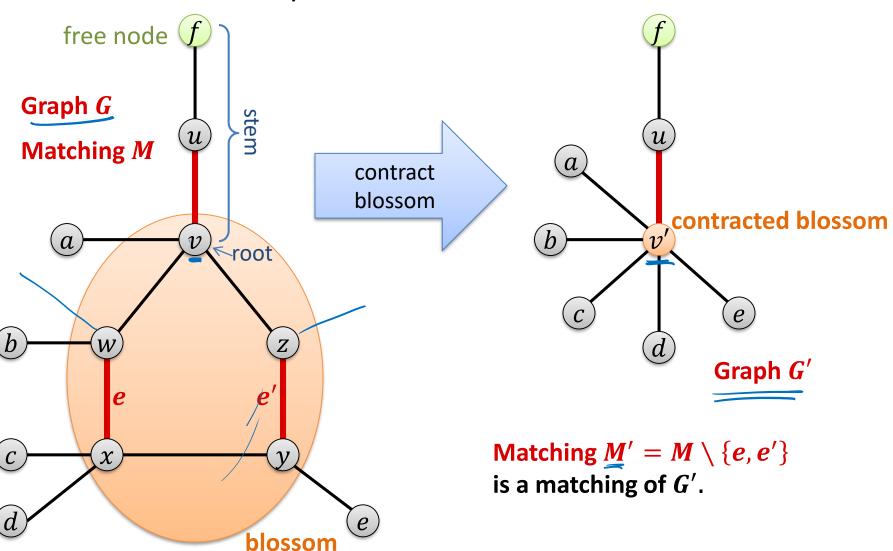


Finding Augmenting Paths



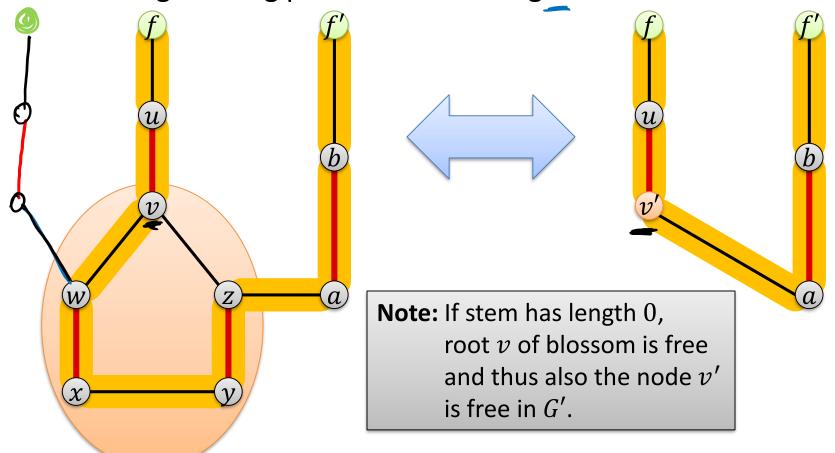
Blossoms

• If we find an odd cycle...



Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'



Also: The matching M can be computed efficiently from M'.

Edmond's Blossom Algorithm

Algorithm Sketch:

- Build a tree for each free node
- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
 - 1. If v is an unexplored node, v is matched to some neighbor w: add w to the tree (w is now explored)
 - 2. If v is explored and in the same tree: at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow blossom found continue on G'
 - 3. If v is explored and in another tree at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow augmenting path found

Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$.

graph expl. to find augm. path or blossom: DFS traverse $O(mn^2)$.

time: O(m)can contact only O(n) blossoms until find augm. path

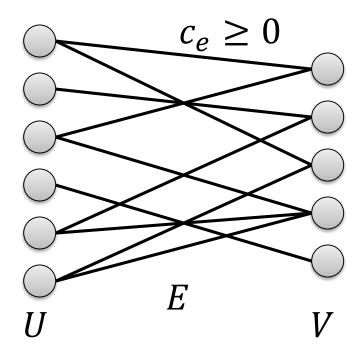
at most O(n) augm. paths

Maximum Weight Bipartite Matching

Let's again go back to bipartite graphs...

Given: Bipartite graph $G = (U \dot{\cup} V, E)$ with edge weights $\underline{c_e} \geq 0$

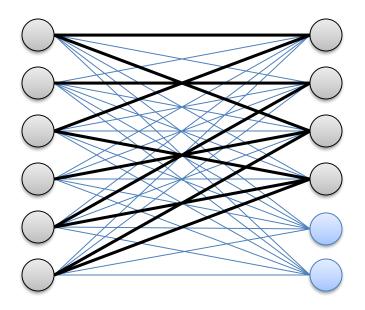
Goal: Find a matching *M* of maximum total weight



Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is equivalent to finding a minimum weight perfect matching in a complete bipartite graph.

- 1. Turn into maximum weight perfect matching
 - add dummy nodes to get two equal-sized sides
 - add edges of weight 0 to make graph complete bipartite
- 2. Replace weights: $\underline{c'_e} := \max_f \{c_f\} c_e$



As an Integer Linear Program 💍 💍

We can formulate the problem as an integer linear program

Var. x_{uv} for every edge $(u, v) \in U \times V$ to encode matching M:

$$x_{uv} = \begin{cases} 1, & \text{if } \{u, v\} \in M \\ 0, & \text{if } \{u, v\} \notin M \end{cases}$$

Minimum Weight Perfect Matching

Linear Programming (LP) Relaxation

Linear Program (LP)

 Continuous optimization problem on multiple variables with a linear objective function and a set of linear side constraints

LP Relaxation of Minimum Weight Perfect Matching

• Weight c_{uv} & variable x_{uv} for ever edge $(u, v) \in U \times V$

$$\min \sum_{(u,v)\in U\times V} c_{uv}\cdot x_{uv}$$

s.t.

$$\forall u \in U \colon \sum_{v \in V} x_{uv} = 1,$$

$$\forall v \in V \colon \sum_{u \in U} x_{uv} = 1$$

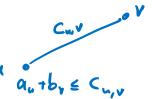
$$\forall u \in U, \forall v \in V: \ x_{uv} \ge 0$$

Dual Problem

- Every linear program has a dual linear program
 - The dual of a minimization problem is a maximization problem
 - Strong duality: primal LP and dual LP have the same objective value

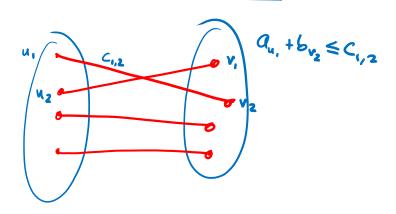
In the case of the minimum weight perfect matching problem

• Assign a variable $\Rightarrow a_u \ge 0$ to each node $u \in U$ and a variable $\Rightarrow b_v \ge 0$ to each node $v \in V$



- Condition: for every edge $(u, v) \in U \times V$: $a_u + b_v \le c_{uv}$
- Given perfect matching *M*:

$$\sum_{(u,v)\in M} c_{uv} \ge \sum_{u\in U} a_u + \sum_{v\in V} b_v$$



Dual Linear Program

• Variables $a_u \ge 0$ for $u \in U$ and $b_v \ge 0$ for $v \in V$

$$\max \sum_{u \in U} a_u + \sum_{v \in V} b_v$$
s.t.
$$\forall u \in U, \forall v \in V: \ a_u + b_v \leq c_{uv}$$

For every perfect matching M:

$$\sum_{(u,v)\in M} c_{uv} \geq \sum_{u\in U} a_u + \sum_{v\in V} b_v$$
would imply that M is optimal!

Complementary Slackness

A perfect matching M is optimal if

$$\sum_{(u,v)\in M} c_{uv} = \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

• In that case, for every $(u, v) \in M$

$$\mathbf{w_{uv}} \coloneqq c_{uv} - a_u - b_v = 0$$

- In this case, M is also an optimal solution to the LP relaxation of the problem
- Every optimal LP solution can be characterized by such a property,
 which is then generally referred to as complementary slackness
- Goal: Find a dual solution a_u , b_v and a perfect matching such that the complementary slackness condition is satisfied!
 - i.e., for every matching edge (u, v), we want $w_{uv} = 0$
 - We then know that the matching is optimal!

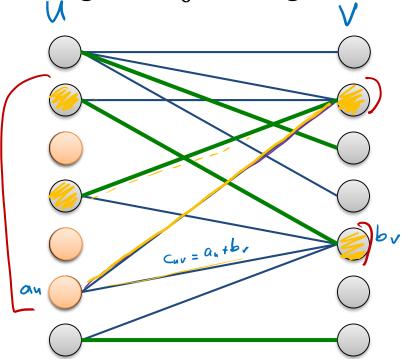
Algorithm Overview

- Start with any feasible dual solution a_u , b_v
 - i.e., solution satisfies that for all (u, v): $c_{uv} \ge a_u + b_v$
- Let E_0 be the edges for which $w_{uv} = 0$
 - Recall that $w_{uv} = c_{uv} a_u b_v$
- Compute maximum cardinality matching M of E_0
- All edges (u, v) of M satisfy $w_{uv} = 0$
 - Complementary slackness if satisfied
 - If M is a perfect matching, we are done
- If M is not a perfect matching, dual solution can be improved

Marked Nodes

Define set of marked nodes *L*:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U



edges E_0 with $w_{uv} = 0$

optimal matching M

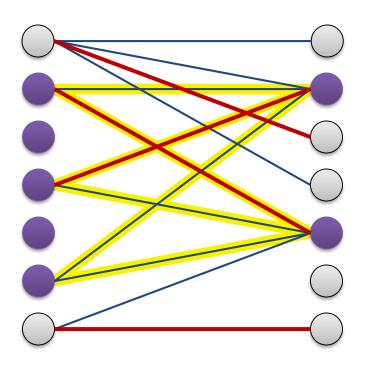
 L_0 : unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L_0

Marked Nodes

Define set of marked nodes *L*:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U



edges E_0 with $w_{uv} = 0$

optimal matching M

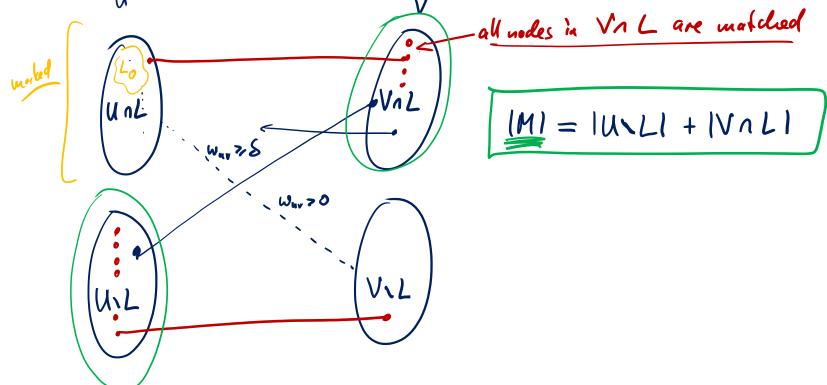
 L_0 : unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L_0

Marked Nodes – Vertex Cover

Lemma:

- a) There are no E_0 -edges between $U \cap L$ and $V \setminus L$
- b) The set $(U \setminus L) \cup (V \cap L)$ is a vertex cover of size |M| of the graph induced by E_0



Improved Dual Solution

Recall: all edges (u, v) between $U \cap L$ and $V \setminus L$ have $w_{uv} > 0$

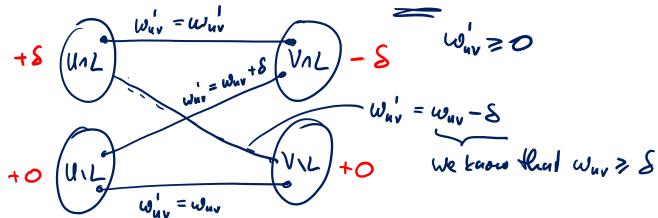
New dual solution:

$$\frac{\delta}{\omega} := \min_{u \in U \cap L, v \in V \setminus L} \{w_{uv}\} > O$$

$$a'_{u} := \begin{cases}
a_{u}, & \text{if } u \in U \setminus L \\
a_{u} + \delta, & \text{if } u \in U \cap L
\end{cases}$$

$$b'_{v} := \begin{cases}
b_{v}, & \text{if } v \in V \setminus L \\
a_{v} - \delta, & \text{if } v \in V \cap L
\end{cases}$$

Claim: New dual solution is feasible (all w_{uv} remain ≥ 0)



Improved Dual Solution

Lemma: Obj. value of the dual solution grows by $\delta\left(\frac{n}{2} - |M|\right)$.

Proof:

$$\delta \coloneqq \min_{u \in U \cap L, v \in V \setminus L} \{w_{uv}\}, \qquad a'_u \coloneqq \begin{cases} a_u, & \text{if } u \in U \setminus L \\ a_u + \delta, & \text{if } u \in U \cap L \end{cases}, \qquad b'_v \coloneqq \begin{cases} b_v, & \text{if } v \in V \setminus L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases}$$

$$\mathcal{D} = \sum_{u \in \mathcal{U}} a_u + \sum_{v \in \mathcal{V}} b_v \qquad \mathcal{D}' = \sum_{u \in \mathcal{U}} a'_u + \sum_{v \in \mathcal{V}} b'_v$$

$$D' = D + 8(|U_{1}| - |V_{1}|)$$

$$= D + 8(|U_{1}| + |U_{1}| - (|V_{1}| + |U_{1}|))$$

$$= |U_{1}| = \frac{n}{2} = |M|$$

$$= D + 8(\frac{n}{2} - |M|)$$

