

Chapter 6 Graph Algorithms

Algorithm Theory WS 2017/18

Fabian Kuhn

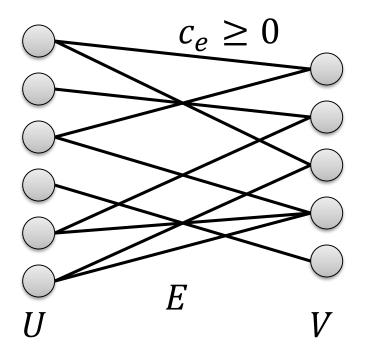
Maximum Weight Bipartite Matching

FREIBURG

• Let's again go back to bipartite graphs...

Given: Bipartite graph $G = (U \cup V, E)$ with edge weights $c_e \ge 0$

Goal: Find a matching *M* of maximum total weight

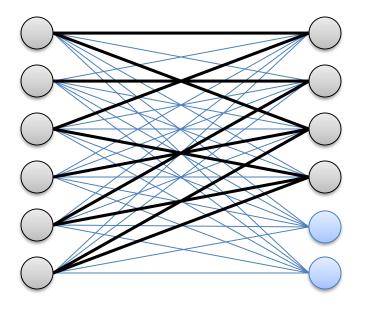


Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is **equivalent** to finding a **minimum weight perfect matching** in a complete bipartite graph.

- 1. Turn into maximum weight perfect matching
 - add dummy nodes to get two equal-sized sides
 - add edges of weight 0 to make graph complete bipartite

2. Replace weights:
$$c'_e \coloneqq \max_f \{c_f\} - c_e$$

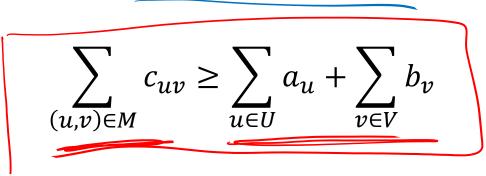


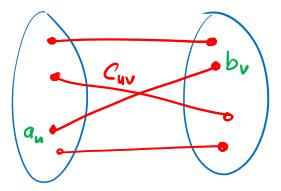
Dual Problem

- Every linear program has a dual linear program
 - The dual of a minimization problem is a maximization problem
 - Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

- Assign a variable $a_u \ge 0$ to each node $u \in U$ and a variable $b_v \ge 0$ to each node $v \in V$
- Condition: for every edge $(u, v) \in U \times V$: $a_u + b_v \leq c_{uv}$
- Given perfect matching *M*:





Complementary Slackness

FREIBURG

• A perfect matching *M* is optimal if

$$\sum_{(u,v)\in M} c_{uv} \stackrel{\checkmark}{=} \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

• In that case, for every $(u, v) \in \underline{M} = \mathbb{P}^{o}$

$$\boldsymbol{w_{uv}} \coloneqq c_{uv} - a_u - b_v = 0$$

- In this case, M is also an optimal solution to the LP relaxation of the problem
- Every optimal LP solution can be characterized by such a property, which is then generally referred to as complementary slackness
- **Goal:** Find a dual solution a_u , b_v and a perfect matching such that the complementary slackness condition is satisfied!
 - i.e., for every matching edge (u, v), we want $w_{uv} = 0$
 - We then know that the matching is optimal!

Algorithm Theory, WS 2017/18

Fabian Kuhn

Algorithm Overview

FREBURG

• Start with any feasible dual solution a_u, b_v - i.e., solution satisfies that for all (u, v): $c_{uv} \ge a_u + b_v$

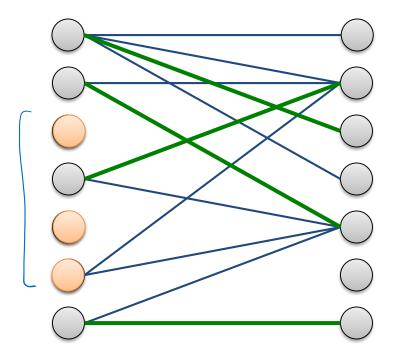
 $Q.g., \quad a_u = b_v = 0$

- Let $\underline{E_0}$ be the edges for which $\underline{w_{uv}} = 0$ - Recall that $w_{uv} = c_{uv} - a_u - b_v$
- Compute maximum cardinality matching M of E_0
- All edges (u, v) of \underline{M} satisfy $w_{uv} = 0$
 - Complementary slackness if satisfied
 - If M is a perfect matching, we are done
- If *M* is not a perfect matching, dual solution can be improved

Marked Nodes

Define set of marked nodes L:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U



edges E_0 with $w_{uv} = 0$

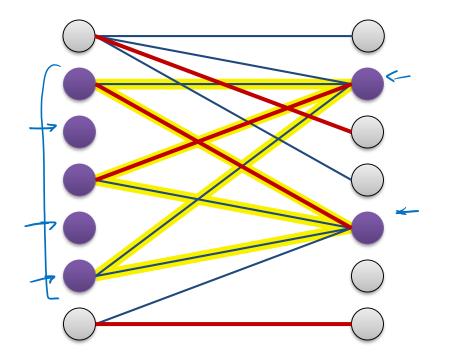
optimal matching M

- *L*₀: unmatched nodes in *U*
- L: all nodes that can be reached on alternating paths starting from L₀

Marked Nodes

Define set of marked nodes L:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U



edges E_0 with $w_{uv} = 0$

optimal matching M

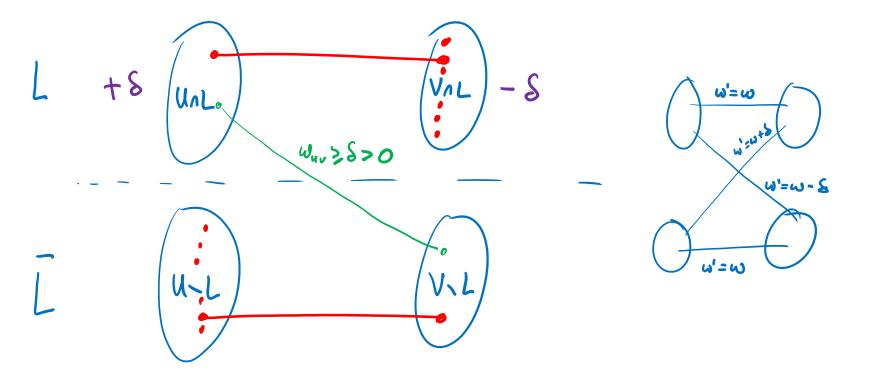
L₀: unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L₀

Marked Nodes – Vertex Cover

Lemma:

- a) There are no E_0 -edges between $U \cap L$ and $V \setminus L$
- b) The set $(U \setminus L) \cup (V \cap L)$ is a vertex cover of size |M| of the graph induced by E_0



Improved Dual Solution

Recall: all edges (u, v) between $U \cap L$ and $V \setminus L$ have $w_{uv} > 0$

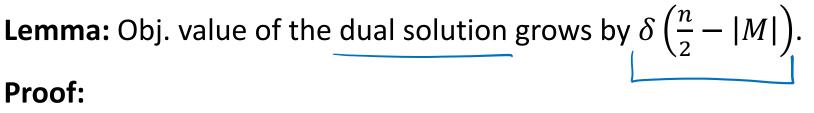
New dual solution:

$$\begin{split} \delta &\coloneqq \min_{u \in U \cap L, v \in V \setminus L} \{ w_{uv} \} \\ a'_u &\coloneqq \begin{cases} a_u, & \text{if } u \in U \setminus L \\ a_u + \delta, & \text{if } u \in U \cap L \end{cases} \\ b'_v &\coloneqq \begin{cases} b_v, & \text{if } v \in V \setminus L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases} \end{split}$$

Claim: New dual solution is feasible (all w_{uv} remain ≥ 0)

Improved Dual Solution

 $|M| < \frac{\gamma}{2}$



$$\delta \coloneqq \min_{u \in U \cap L, v \in V \setminus L} \{w_{uv}\}, \qquad a'_u \coloneqq \begin{cases} a_u, & \text{if } u \in U \setminus L \\ a_u + \delta, & \text{if } u \in U \cap L \end{cases}, \qquad b'_v \coloneqq \begin{cases} b_v, & \text{if } v \in V \setminus L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases}$$

UNI FREIBURG

Some terminology

- Old dual solution: $\underline{a_u}$, $\underline{b_v}$, $w_{uv} \coloneqq c_{uv} a_u b_v$ New dual solution: $\overline{a'_u}$, $\overline{b'_v}$, $\overline{w'_{uv}} \coloneqq c_{uv} a'_u b'_v$
- $E_0 \coloneqq \{(u, v) : w_{uv} = 0\}, \quad E'_0 \coloneqq \{(u, v) : w'_{uv} = 0\}$
- $\overline{\overline{M}}, M'$: max. cardinality matchings of graphs ind. By E_0, E'_0

Claim: $|M'| \ge |M|$ and if |M'| = |M|, we can assume that M = M'.

Termination

Lemma: The algorithm terminates in at most $O(n^2)$ iterations.

Proof:

Each iteration: $\underline{M' > M}$ or $\underline{M' = M}$ and $|V \cap L'| > |V \cap L|$ all of those $\overline{E_0}$ - edges are in $\overline{E_0}$ ullet- 8 +8 VAL UnL = will be marked $\omega_{uv} = \delta \quad \omega_{uv} = O$ eE' VL UL

Min. Weight Perfect Matching: Summary

Theorem: A minimum weight perfect matching can be computed in time $O(n^4)$.

- First dual solution: e.g., $a_u = 0$, $b_v = \min_{u \in U} c_{uv}$ or just $a_u = b_r = 0$
- Compute set $E_0: O(n^2)$

O(n²) edges

- Compute max. cardinality matching of graph induced by E_0
 - First iteration: $O(n^2) \cdot O(n) = O(n^3)$
 - Other iterations: $O(n^2) \cdot O(1 + |M'| |M|)$

total cost when improving matching:
$$O(n^3)$$

total cost when $|M| = (M'| : O(n^2) \cdot O(n^3) = O(n^4)$
marking: $O(n^2) \cdot O(n^2) = O(n^4)$

Algorithm Theory, WS 2017/18

UNI

We have seen:

- **O**(**mn**) time alg. to compute a max. matching in *bipartite graphs*
- $O(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of **maximum total weight**
- *Bipartite graphs*: polynomial-time primal-dual algorithm
- General graphs: can also be solved in polynomial time (Edmond's algorithm is used as blackbox)