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Maximum Weight Bipartite Matching
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* Let’s again go back to bipartite graphs...

Given: Bipartite graph G = (U U V, E) with edge weights c, = 0
Goal: Find a matching M of maximum total weight

C, = 0
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Minimum Weight Perfect Matching

UNI
f

FREIBURG

Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turninto maximum weight perfect matching
. add dummy nodes to get two equal-sized sides
. add edges of weight 0 to make graph complete bipartite

2. Replace weights: ¢, = m}gx{cf} — Ce
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Dual Problem
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* Every linear program has a dual linear program
— The dual of a minimization problem is a maximization problem
— Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

a, = 0toeachnodeu € U Cuv b

QgZOtoeachnodevEV

* Assign a variable

and a variable a

U

\Y

* Condition: for every edge (u,v) € U X V: ( a,+ b, < ¢,y
e Given perfect matching M'

z cuv_Zau+Zb

(u,v)eEM ueu VEV
ﬁ
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Complementary Slackness
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* A perfect matching M is optlmal if

Z €y = Zau+2b

(u,v)eEM ueu VEV
——— e

* In that case, for every (u, v) EM o

Wyp = Cyp — Qy — by =0
=E—x e —— e e,
— In this case, M is also an optimal solution to the LP relaxation of the

problem

— Every optimal LP solution can be characterized by such a property,
which is then generally referred to as complementary slackness

* Goal: Find a dual solution a,, b,, and a perfect matching such
that the complementary slackness condition is satisfied!
— i.e., for every matching edge (u, v), we want w,,, = 0
— We then know that the matching is optimal!
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Algorithm Overview
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* Start with any feasible dual solution a,,, b,

. . . . é
— i.e., solution satisfies that for all (u, v): ¢y, = a, + b,

Qg =& =0
* Let E, be the edges for which w,,, =0

— Recall that Wypy = Cyy — Ay — by,

* Compute maximum cardinality matching M of E

* All edges (u, v) of M satisfy w,,,, = 0

— Complementary slackness if satisfied
— If M is a perfect matching, we are done

* If M is not a perfect matching, dual solution can be improved
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Marked Nodes
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Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O

edges E, withw,, = 0

—_—

—
e

optimal n?a?tching M

Ly: unmatched nodes in U

==

L: all nodes that can be reached
on alternating paths starting
from L,

O
O

Algorithm Theory, WS 2017/18 Fabian Kuhn 7



Marked Nodes
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Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O edges Ey withw,, = 0
[ < optimal matching M
TO Ly: unmatched nodes in U

L: all nodes that can be reached
@ on alternating paths starting

- O from L
O
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Marked Nodes — Vertex Cover

UNI
FREIBURG

Lemma:
a) There are no Ey-edges betweenU N Land V' \ L

b) Theset (U\L)U (V NL)isavertex cover of size |M|
of the graph induced by E,

i\
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Improved Dual Solution
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Recall: all edges (u, v) between U N L and V \ L have w,,, > 0

New dual solution:

0= ol W)

;L a,, ifu € U\L
au‘_{au+5, ifueUnlL
" ._{ b, if v e V\L

v la,—68, ifvevnl

Claim: New dual solution is feasible (all wy,,, remain = 0)
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Improved Dual Solution Mi< 3

.
Lemma: Obj. value of the dual solution grows by & (g — IMI).
Proof: - |
0= i d =t N e
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Termination

UNI

FREIBURG

Some terminology
* Old dual solution: a,, b, Wy, = Cy, —a, — by,

=

* New dual solution: a,,, b,, W), =cy, —a, — b,
* EO = {(u, U) : Wuv — O}, E(,) = {(u, U) : W’L,Lv — O}

—_—
———

e M, 1_\1’ : max. cardinality matE—‘P’\ings of graphs ind. By E, E|

Claim: IM’I |IM| and if |M'| = |[M|, we can assume that M = M'.

—_t
+8©ww-ww f ) —2 M < k&,
wuv_“)\' 4‘
LW
]
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Termination
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Lemma: The algorithm terminates in at most 0 (n?) iterations.
;

Proof:

* Eachiteration: M">M or M'=Mand|[VNL|>|VNL]|
ol of Hose Bom iy ceds B,

—/,

1‘8 un'L V/'L - S
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Min. Weight Perfect Matching: Summary _

UNI
FREIBURG

Theorem: A minimum weight perfect matching can be computed

in time 0(n*). A r- )
* First dual solution: e.g., a, = 0, b, = mellrjl Cuv
— u

or stJ a, = (’I:O
e Compute set Ey: 0(n?)
Ou') Ug@}
* Compute max. cardinality matching of graph induced by E|,
— First iteration: 0(n?) - 0(n) = 0(n3) =—
— Other iterations: 0(n?) - 0(1 + |[M'| — |M|)
’\DLG( Co.s] w&m ?w‘ror’va W“'Jta)“t ! 0{143)
olal ) whow MI= (M1 = O - () = O(u*)
\Mar‘ét“é : 6( "\1) ’ O(WL) =O(m“/
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Matching Algorithms
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We have seen:

 O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

* Best known running time (bipartite and general gr.): O(m\/ﬁ)

—,

Weighted matching:
* Edges have weight, find a matching of maximum total weight
* Bipartite graphs: polynomial-time primal-dual algorithm

* General graphs: can also be solved in polynomial time
(Edmond’s algorithm is used as blackbox)
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