Chapter 7
Randomization

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI
I

FREIBURG

Randomization

Randomized Algorithm:

* An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...
* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Contention Resolution

UNI
FREIBURG

A simple starter example (from distributed computing)
* Allows to introduce important concepts
e ...and to repeat some basic probability theory

Setting:

* n processes, 1 resource
(e.g., communication channel, shared database, ...)

* There are time slots 1,2,3, ...
* In each time slot, only one client can access the resource
* All clients need to regularly access the resource

 |fclienti tries to access the resource in slot t:
— Successful iff no other client tries to access the resource in slot t

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

Algorithm

UNI
f

FREIBURG

Algorithm Ideas:

* Accessing the resource deterministically seems hard
— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probability p.

Analysis:

* How large should p be?

* How long does it take until some process i succeeds?
* How long does it take until all processes succeed?
 What are the probabilistic guarantees?

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Analysis

UNI

FREIBURG

Events:

* A, .. process x tries to access the resource in time slot ¢

— Complementary event: A, ;

P(Ay:) =p, P(Ayx)=1-p

* 8, process x is successful in time slot ¢

Sx,t — ‘/qx,t N ‘/qy,t

VEX

* Success probability (for process x):

Algorithm Theory, WS 2017/18 Fabian Kuhn

Fixing p

UNI

FREIBURG

« P(S.:) =p(1—p)"1is maximized for
n

* Asymptotics:

Forn = 2:

-m»—x
/\
p—

I
S| =
N~

S
N\
Q| =
N\
-~
p—
I
S| =

* Success probability:

1 1
< P(8,;) < o

Algorithm Theory, WS 2017/18 Fabian Kuhn

1 1 1\" 1
p=— = P(Sx,t)zg 1—=] .

Time Until First Success

UNI
FREIBURG

Random Variable T';:

 T; =tif proc.iissuccessfulin slot t for the first time

e Distribution:

e T;is geometrically distributed with parameter

1 1\""' 1
q=P(Sy)=—|1-=] >—.

* Expected time until first success:

1
E|T;] = a <en

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Time Until First Success

UNI
FREIBURG

Failure Event ¥, ;: Process x does not succeed in time slots 1, ..., ¢

* The events S, ; are independent for different ¢:

P(Fy) = (]

* We know that IP’(SW) > 1/,

1 t
P(F,.) < (1 = —) < e/en

en

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Time Until First Success

UNI
f

FREIBURG

No success by time t: [P)(Tx,t) < g~ /en
t = [en]: IP(Tx,t) <1/e
* Generallyif t = ©(n): constant success probability

t>en-c-lnn: P(Tx,t) < 1/ec-1nn =1/ .
e For success probability 1 — 1/, we need t = O(nlogn).

* We say that i succeeds with high probability in O(nlogn) time.

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Time Until All Processes Succeed

Event F;: some process has not succeeded by time t

n
Fe = UTx,t
x=1

Union Bound: For events &4, ..., &,

K k
P U o 2 P(E.)
X X
Probability that not all processes have succeeded by time t:

P(F,) =P (U :Fx,t> < 2 P(Fy.) <n-eTen,
x=1 x=1

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Time Until All Processes Succeed

UNI
FREIBURG

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof:
e P(F,) <n-et/en
« Sett =[en:(c+1)Inn]

Remark: @(nlogn) time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Expected Time Until All Processes Succeed _

UNI
FREIBURG

Claim: In expectation, the time until all processes succeed
at least once is O(nlogn).

Proof:

* Random variables T;:
time until exactly 0 < i < n different processes have succeeded

Goal: Compute E|T,,]

* Randomvariable A; :=T; — T;_4
— A; measures the number of rounds needed for the it" process to succeed
after exactly i — 1 processes have succeeded

* We can express T, as a function of the A; random variables:

Tn:A1+A2+”'+An

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Expected Time Until All Processes Succeed _

UNI
FREIBURG

Claim: In expectation, the time until all processes succeed
at least once is O(nlogn).

Distribution of A;?

1

* Recall that— < P(Sxt =

* Event §;: some new process is successful in round t

* Assume that exactly i — 1 processes have been successful so far

q; = P(S; | "exactly i — 1 succ. proc. before round t")

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Expected Time Until All Processes Succeed _

UNI
FREIBURG

Claim: In expectation, the time until all processes succeed
at least once is O(nlogn).

Distribution of A;?
* q; = IP(S; | "exactly i — 1 succ. proc. before round t")

* A, is geometrically distributed with parameter g;

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Expected Time Until All Processes Succeed

UNI

FREIBURG

Claim: In expectation, the time until all processes succeed
at least once is O(nlogn).

 Recall we need E[T,,], where T,, = A; + A, + -+ A,

Algorithm Theory, WS 2017/18 Fabian Kuhn

15

Primality Testing

UNI

Problem: Given a natural numbern = 2, isn a prime number?

Simple primality test:
1. ifniseven then

2 return (n = 2)

3. fori:=1to [\/ﬁ/ZJ do
4, if 21 + 1 divides n then
5 return false

6. return true

* Running time: 0(1/n)

Algorithm Theory, WS 2017/18 Fabian Kuhn

16

FREIBURG

A Better Algorithm?

UNI
f

FREIBURG

* How can we test primality efficiently?
 We need a little bit of basic number theory...

Square Roots of Unity: In Z;,, where p is a prime, the only
solutions of the equation x? = 1 (mod p) are x = +1 (mod p)

 If we find an x £ +1 (mod n) such that x? = 1 (mod n), we
can conclude that n is not a prime.

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

Algorithm Idea

UNI
f

FREIBURG

Claim: Let p > 2 be a prime number such that p — 1 = 2°d for an
integer s = 1 and some odd integer d = 3. Then for all a € Z,

a? =1 (modp) or a? 4 =—1(modp) forsome0 < r < s.

Proof:
* Fermat’s Little Theorem: Given a prime number p,
Va € Zy: aP™' =1 (modp)

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Primality Test

UNI
FREIBURG

We have: If n is an odd primeandn — 1 = 2°d for an integers > 1
and an odd integer d = 3. Thenforalla € {1, ...,n — 1},

2"d —

a® =1 (modn) or a —1 (mod n) forsome0 <71 < s.

Idea: If we findana € {1, ...,n — 1} such that

a? 1 (modn) and a2 % £ —1 (modn) forall0 <r <s,
we can conclude that n is not a prime.

* For every odd composite n > 2, at least 3/, of all possible a
satisfy the above condition

* How can we find such a witness a efficiently?

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Miller-Rabin Primality Test

UNI

FREIBURG

* Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test:
if n is even then return (n = 2)
compute s, d such thatn — 1 = 2°d;
choose a € {2, ...,n — 2} uniformly at random;
x = a® mod n;
if x =1 orx = n — 1 then return probably prime;
forr:=1tos—1do
x = x* mod n;
if x = n — 1 then return probably prime;

L 0 N O Uk WDNPRE

return composite;

Algorithm Theory, WS 2017/18 Fabian Kuhn

20

Analysis

UNI
FREIBURG

Theorem:
* Ifnis prime, the Miller-Rabin test always returns true.

* If nis composite, the Miller-Rabin test returns false with
probability at least 3/,.

Proof:
* Ifnis prime, the test works for all values of a
* If nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to
detect a composite number n with probability at most 47%.

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Running Time

UNI

FREIBURG

Cost of Modular Arithmetic:
* Representation of a number x € Z,,: O(logn) bits

* Cost of adding two numbers x + y mod n:

* Cost of multiplying two numbers x - y mod n:

— It’s like multiplying degree O (logn) polynomials
—> use FFT to computez = x - y

Algorithm Theory, WS 2017/18 Fabian Kuhn

22

UNI
f

FREIBURG

Running Time

d

Cost of exponentiation x“ mod n:

* Can be done using 0 (log d) multiplications

 Base-2 representationofd: d =);_ logd d; 2!

* Fast exponentiation:
1. y:=1;

2. fori:=|logd]|to0do

3 y = y% mod n;

4. ifd; = 1theny :=y-x modn;
5. returny;

e Example:d = 22 =10110,

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Running Time L

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time O(log? n - loglogn - logloglogn).

if n is even then return (n = 2)

compute s, d such thatn — 1 = 2°d;

choose a € {2, ...,n — 2} uniformly at random;
x = a® mod n;

if x =1 orx = n — 1 then return probably prime;
forr:=1tos—1do

x = x* mod n;

if x = n — 1 then return probably prime;

L 0 N OV Rk WDNR

return composite;

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

U

Deterministic Primality Test

ZI-LI
S&

* If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 0(log? n)}

* It has long not been proven whether a deterministic,
polynomial-time algorithm exists

* In 2002, Agrawal, Kayal, and Saxena gave an O (log!? n)-time
deterministic algorithm

— Has been improved to 0(log® n)

* In practice, the randomized Miller-Rabin test is still the fastest
algorithm

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

