Chapter 7
Randomization

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI
I

FREIBURG

Randomization

Randomized Algorithm:

* An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...
* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

Contention Resolution

UNI
f

FREIBURG

A simple starter example (from distributed computing)
* Allows to introduce important concepts
e ...and to repeat some basic probability theory

Setting: oo

* n processes, 1 resource
(e.g., communication channel, shared database, ...)

* There are time slots 1,2,3, ... (265)

* In each time slot, only one client can access the resource
* All clients need to regularly access the resource

 |fclienti tries to access the resource in slot t:
— Successful iff no other client tries to access the resource in slot t

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

V. W efces

Algorithm Y

UNI
f

FREIBURG

Algorithm Ideas:

* Accessing the resource deterministically seems hard
— need to make sure that processes access the resource at different times

— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probability p.

——

Analysis:

* How large should p be?

* How long does it take until some process i succeeds?
* How long does it take until all processes succeed?
 What are the probabilistic guarantees?

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

UNI

Analysis T(AnB)=PA) T'B)

Events:

A, ;:process x tries to access the resource in time slot ¢
! -

S ——

— Complementary event: A, ;

P(Aye) =p, P(Ax)=1-p

¢+ process x is successful in time slot ¢

"

—

,.(y /(9, { UiAuJ'ucll?
Sxt = c/qx ¢ N (Ay, t> v dopenciangt

VEX

* Success probability (for process x):| (,.o.. o sd. RUS..0) 36 vaar et

(K(g)rf) ﬁ(*u) | ?4: =?((-f)
F

a’&w

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

FREIBURG

Fixing p :

UNI
FREIBURG

« P(S.:) =p(1—p)"is maximized fo/rm

1 1 1\"" __
p:— — P(‘S‘x,t)zg 1__ . é—m

n n
1 Pl
« Asymptotics: /j/e—\ A
1_ 1\" 1 1\""' 1
Forn=>=2: - 1——] <—-<[(1—- < —
4 n e n 2

* Success probability:

1 1
< P(8,;) < o

—— _—

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

Time Until First Success q:= F(s.)=2 (-4

UNI
f

FREIBURG

Random Variable Ty:,

X
* Ty = tif proc. ¢is successful in slot t for the first time

e Distribution:

Pren=q, MT2=0-09, TT-0-09"9

e T;is geometrically distributed with parameter

=P(S)—1 -2 n_1> .
4= Wt n en’
* Expected time until first success:
1
E|T;] =—<en
q

Aﬂ
Algorithm Theory, WS 2017/18 Fabian Kuhn

Time Until First Success

UNI
FREIBURG

Failure Event F, ;: Process x does not succeed in time slots 1

- f

6_:4 = ﬂ gx,—('

4=

* The events S, ; are independent for different ¢:
t
P(Fe) = ﬂ

* We know that IP’(SW) > 1/,

1+ ¥

IP)(T)< 1_1 té/e_t/en e
x,t | en
"I/eu
<e

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

o —

Time Until First Success

UNI

FREIBURG

No success by time t: [P)(Tx,t) < g~ en

,%‘C"Qu\\
y

= fon: () < Ve -

* Generallyif t = ®(n): constant success probability

t=zen-c- Inn: P(Tx,t) < 1/ec-lnn = /ne

e For success probability 1 — 1/, we need t = O(nlogn).

(4,”‘04\ fmb.a | - -‘-c‘ i

n C cau ou(t7
K)ﬁ aun cout €30 affed ¥ L:fhon,
L/ .a Co-v$J~.

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

X
[A' We say that % succeeds with high probability in O(nlogn) time.

Time Until All Processes Succeed

UNI
f

FREIBURG

Event F;: some process has not succeeded by time ¢t

‘e > "
ro=|)7
T(AD) =P+ PB) -TUAaB) _F Xt
5?1/4) +?‘B) < uudtn Soued x=1

Union Bound: For events &4, ..., &,

—

2 Oex szk:n»(ex)

X X

Probability that not all processes have succeeded by time t:

- */eu

n n /=%
— _t/
P(F,) =P (U :)fx,t) < 2 P(Fyr) <n-e”/en.
—_— x=1 =1 K — =

unisn bow A
Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Time Until All Processes Succeed

UNI
f

FREIBURG

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

—_—

Proof:

e P(F,) <n-et/en

« Sett =[en:(c+1)Inn]
— (e L

\ (
MF)<n-e =n-— =
n n

S A
W($)>l_ m‘

Remark: @(nlogn) time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Expected Time Until All Processes Succeed _

UNI
FREIBURG

Claim: In expectation, the time until all processes succeed
at least once is O(nlogn).

—

Proof:

* Random variables T;:
time until exactly 0 < i < n different processes have succeeded

* Goal: Compute E[T},] o 1 2 G

—t =
« Random variable A; == T; — T;_4 4
— A; measures the number of rounds needed for the it" process to succeed

after exactly i — 1 processes have succeeded

* We can express T, as a function of the A; random variables:

Tn:A1+A2+”'+An

T -To+ LT, +G-T, & .. 3 (-

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Expected Time Until All Processes Succeed _

UNI

Claim: In expectation, the time until all processes succeed

at least once is O(nlogn). N ,
Tf(gm)>€'
Distribution of A;?
1
* Recall that— < P(Sxt =

—_—

* Event §;: some new process is successful in round t

E fg——
* Assume that exactly i — 1 processes have been successful so far

q; = P(S; | "exactly i — 1 succ. proc. before round t")

W=+ W~14)
< ﬁ <
v (TN

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

FREIBURG

FREIBURG

Expected Time Until All Processes Succeed _

UNI

Claim: In expectation, the time until all processes succeed
at least once is O(nlogn).

Distribution of A;?
« q; = IP(S; | "exactly i — 1 succ. proc. before round t")
* A, is geometrically distributed with parameter g;

—
—_—

n-4) < < -0+
£2wn ' 2‘4

E{A;) = Z}; ‘E[Z\I < f_\?ﬁ
B(A]= o

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Expected Time Until All Processes Succeed _

UNI
FREIBURG

Claim: In expectation, the time until all processes succeed

t least isO(nl :
at least once is O(nlogn) E(A] —
* Recall we need IE[T] where T, —A1+A2+---+An
Qi of 0P
4

BCL)= B[O+ A 5 S E(A)

w ‘ n (

< on - m: QMAQZ_;:QM-"((M): 64(.2,\“ +al))
(= &;\—
- l«c-r-uou?(Seaes

Alola lauunel EEL]< @ ulun +8(n)

H j 2 Qu b +60)

HW = Guw) + O

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

UNI

Primality Testing

FREIBURG

Problem: Given a natural numbern = 2, isn a prime number?

|

Simple primality test:
ab=n
if n is even then

return (n = 2)

1
2
3. fori:=1to [\/H/ZJ do "LML‘ O()
4, if 21 + 1 divides n then
5
6

Sive \u_pm) O [08 W)

=
return true dhwe 35 rp. b ciie of iaput

return false

* Running time: 0(1/n)

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

A Better Algorithm?

UNI
FREIBURG

* How can we test primality efficiently?
 We need a little bit of basic number theory...

/
ﬂ Square Roots of Unity: In Z;,, where p is a prime, the only
solutions of the equation x? = 1 (mod p) are x = +1 (mod p)

/2: =18 X" =\ (wek p)
2=l = 0 (udp)
(N (x-1) = 0 (wd p) =D (x+D)(x-N= C P
as o IO
/\Lo('\mb‘lg@%m& P N i &q&' ﬁ o
p=1S] XH = O (med §)
x =4 * =\ (wed (S) Xx-t = 0 Cwedp)

 If we find an x £ +1 (mod n) such that x? = 1 (mod n), we
can conclude that n is not a prime.

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

UNI

Algorithm Idea

FREIBURG

Claim: Let p > 2 be a prime number such thatp — 1 = 25d for an
integers > 1 >1 and some odd integer d = 3. Then for all = 7y,

2'd = —1 (mod p) forsome 0 <71 < s.

a® =1 (modp) or a

Proof: eall X2 1 Cued p) = Kk =% | (wedp)

* Fermat’s Little Theorem: Given a prime number p,
Va € Zy: aP™' =1 (modp)

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Primality Test

UNI
FREIBURG

We have: If n is an odd primeandn — 1 = 2°d for an integers > 1
and an odd integer d = 3. Thenforalla € {1, ...,n — 1},

w a® =1 (modn) or a? % =—1 (modn) forsome 0 < r <s.

Idea: If we find an a € {1, ...,n — 1} such that

“ — a?# 1 (modn) and a? % £ —1 (modn) forall0 <r <s,
we can conclude that n is not a prime.

* For every odd composite n > 2, at least 3/, of all possible a

satisfy the above condition et possitle a
RZZEZZIE I

* How can we find such a witness a efficiently?

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Miller-Rabin Primality Test

UNI
f

FREIBURG

* Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test:

1. ifniseven thenreturn (n = 2)

2. compute s, d suchthatn — 1 = 2°d;

3. choosea € {2,...,n — 2} uniformly at random;

4. x:= a%modn;

5. ifx =1orx =n—1 then return probably prime;
6. forr:=1tos—1do

7. x = x? mod n;

8. if x = n — 1 then return probably prime;

9. lreturn composﬁ?\‘——

Algorithm Theory, WS 2017/18 Fabian Kuhn

20

Analysis

UNI
FREIBURG

Theorem: .y
* Ifnis prime, the Miller-Rabin test always returns true.

* Ifnis composite, the Miller-Rabin test returns false with
probability at least 3/,. composile

Proof:
* Ifnis prime, the test works for all values of a
* If nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeateditimes, it fails to
detect a composite number n with probability at most 4.

_——

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

Running Time

UNI

FREIBURG

Cost of Modular Arithmetic:
* Representation of a number x € Z,,: O(logn) bits

aad —

* Cost of adding two numbers x + y mod n: O(l.[u)

* Cost of multiplying two numbers x - y mod n: uam(.’ O/&o{u)

— It’s like multiplying degree O (logn) polynomials
—> use FFT to computez =x - y @([pén-&;@n -)@;ﬂ/lya)

Algorithm Theory, WS 2017/18 Fabian Kuhn

22

Running Time

UNI

FREIBURG

Cost of exponentiation x
s — 4

4 mod n:

* Can be done using 0 (log d) multiplications

 Base-2 representationofd: d =);_ logd d; 2!

* Fast exponentiation:

1. y:=1;
2. fori:=|logd]|to0do
3 y = y% mod n;
4. ifd; = 1theny :=y-x modn;
5. returny; O
o | tl:_’,/v’ ©
+ Example: d = 22 = 10110, —
s
" C 2 z 2 2 2
= (") = (O x) = (<Y)

Algorithm Theory, WS 2017/18

Fabian Kuhn

23

Running Time L

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time 0(log® n -\log logn - logloglog nPF 6(.@".\7
i —/

if n is even then return (n = 2)

compute s, d such thatn — 1 = 2°d;

choose a € {2, ...,n — 2} uniformly at random;
x = a® mod n;

if x =1 orx = n — 1 then return probably prime;
forr:=1tos—1do

x = x* mod n;

if x = n — 1 then return probably prime;

L 0 N OV Rk WDNR

return composite;

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

U

Deterministic Primality Test

Zluu
o5&

* If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 0(log? n)}

* It has long not been proven whether a deterministic,
polynomial-time algorithm exists
¢
* In 2002, Agrawal, Kayal, and Saxena gave an O(log!? n)-time
deterministic algorithm

— Has been improved to 0(log® n)

* In practice, the randomized Miller-Rabin test is still the fastest
algorithm

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

