

Chapter 7 Randomization

Algorithm Theory WS 2017/18

Randomized Algorithm:

 An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to

- Make algorithms faster
- Make algorithms simpler
- Make the analysis simpler
 - Sometimes it's also the opposite...
- Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
 - True in some computational models (e.g., for distributed algorithms)
 - Not clear in the standard sequential model

Contention Resolution

A simple starter example (from distributed computing)

- Allows to introduce important concepts
- ... and to repeat some basic probability theory

Setting:

- *n* processes, 1 resource
 (e.g., <u>communication channel</u>, shared database, ...)
- There are time slots 1,2,3, ...
- In each time slot, only one client can access the resource
- All clients need to regularly access the resource
- If client *i* tries to access the resource in slot *t*:
 - Successful iff no other client tries to access the resource in slot t

4 processos stots 1,2,3,...

Algorithm Ideas:

- Accessing the resource deterministically seems hard
 - need to make sure that processes access the resource at different times
 - or at least: often only a single process tries to access the resource
- Randomized solution:

In each time slot, each process tries with probability p.

Analysis:

- How large should *p* be?
- How long does it take until some process *i* succeeds?
- How long does it take until all processes succeed?
- What are the probabilistic guarantees?

Analysis

Events:

• $\mathcal{A}_{x,t}$: process x tries to access the resource in time slot t

– Complementary event: $\overline{\mathcal{A}_{x,t}}$

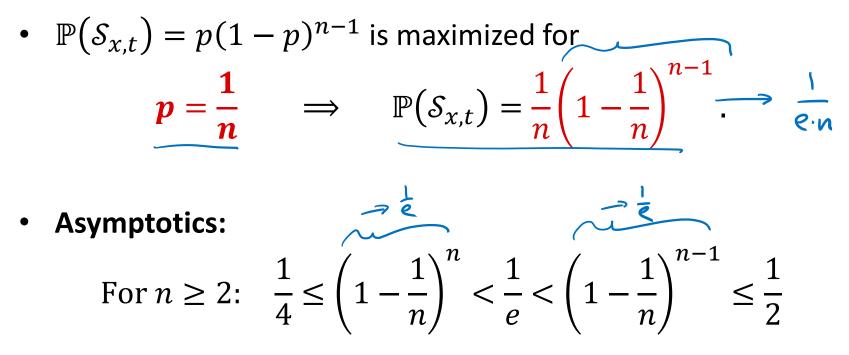
$$\mathbb{P}(\mathcal{A}_{x,t}) = p, \qquad \mathbb{P}(\overline{\mathcal{A}_{x,t}}) = 1 - p$$

- Success probability (for process x): (Coose p s.t. $\mathbb{P}(S_{x,t})$ is maximited

$$\mathcal{P}(S_{x,+}) = \mathcal{P}(\mathcal{A}_{x,+}) \cdot \prod_{\substack{i=1\\p \neq x}} \mathcal{P}(\mathcal{A}_{y,+}) = \mathcal{P}(1-p)^{h-1}$$

Algorithm Theory, WS 2017/18

Fixing p

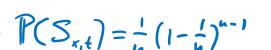


• Success probability:

$$\frac{1}{en} < \mathbb{P}(\mathcal{S}_{x,t}) \leq \frac{1}{2n}$$

Algorithm Theory, WS 2017/18

Time Until First Success $q := P(S_{x,t}) = \frac{1}{n} (1 - \frac{1}{n})^{n-1}$



Random Variable T₄:

- $T_{k} = t$ if proc. $\frac{1}{4}$ is successful in slot t for the first time
- **Distribution:**

 $\mathbb{P}(T_{x}=1) = q$, $\mathbb{P}(T_{x}=2) = (1-q) \cdot q$, $\mathbb{P}(T_{x}=4) = (1-q)^{t-1} \cdot q$

• T_i is geometrically distributed with parameter

$$q = \mathbb{P}(\mathcal{S}_{i,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} > \frac{1}{en}.$$

Expected time until first success: \bullet

$$\mathbb{E}[T_i] = \frac{1}{q} < en$$

Time Until First Success

Failure Event $\mathcal{F}_{x,t}$: Process x does not succeed in time slots $1, \dots, t$ $\mathfrak{F}_{x,t} = \bigcap_{t' \in I} \mathfrak{S}_{x,t'}$

• The events $S_{x,t}$ are independent for different t:

$$\mathbb{P}(\mathcal{F}_{x,t}) = \mathbb{P}\left(\bigcap_{r=1}^{t} \overline{\mathcal{S}_{x,r}}\right) = \prod_{r=1}^{t} \mathbb{P}(\overline{\mathcal{S}_{x,r}}) = \left(1 - \mathbb{P}(\mathcal{S}_{x,r})\right)^{t}$$
$$\forall_{x \in \mathbb{R}} : 1 + x \in e^{x} / e^{x}$$

• We know that $\mathbb{P}(\mathcal{S}_{x,r}) > 1/_{en}$:

$$\mathbb{P}(\mathcal{F}_{x,t}) < \left(1 - \frac{1}{en}\right)^t \leq e^{-t/en}$$

Algorithm Theory, WS 2017/18

 $\frac{1}{2} < q < \frac{1}{2}$

Time Until First Success

No success by time
$$t: \mathbb{P}(\mathcal{F}_{x,t}) < e^{-t/_{en}}$$

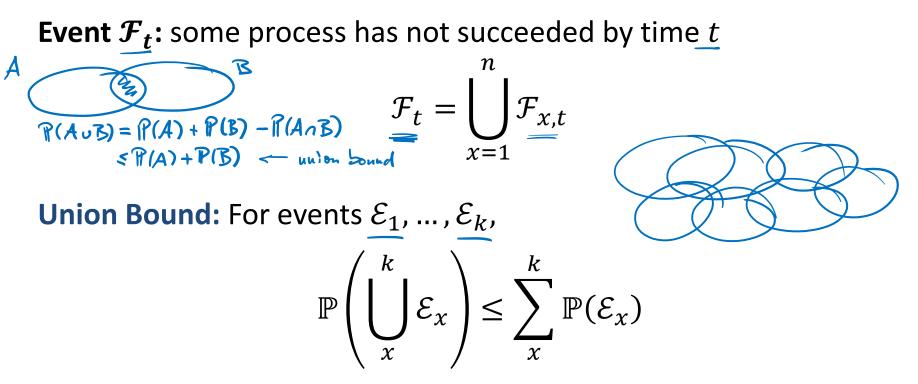
$$t = [en]: \mathbb{P}(\mathcal{F}_{x,t}) < \frac{1}{e}$$

• Generally if $t = \Theta(n)$: constant success probability

$$t \ge en \cdot c \cdot \ln n$$
: $\mathbb{P}(\mathcal{F}_{x,t}) < \frac{1}{e^{c \cdot \ln n}} = \frac{1}{n^c}$

- For success probability $1 \frac{1}{n^c}$, we need $t = \Theta(n \log n)$.
- We say that $\frac{1}{2}$ succeeds with high probability in $O(n \log n)$ time. with $pob. \ge 1 - \frac{1}{n^2}$ for any const. C>0 Const.

Time Until All Processes Succeed



Probability that not all processes have succeeded by time *t*:

$$\mathbb{P}(\mathcal{F}_t) = \mathbb{P}\left(\bigcup_{x=1}^n \mathcal{F}_{x,t}\right) \leq \sum_{x=1}^n \mathbb{P}(\mathcal{F}_{x,t}) < n \cdot e^{-t/en}.$$

Algorithm Theory, WS 2017/18

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first $O(n \log n)$ time slots.

Proof:

- $\mathbb{P}(\mathcal{F}_t) < n \cdot e^{-t/en}$
- Set $t = [en \cdot (c+1) \ln n]$

$$\Re(\mathcal{F}_{t}) < n \cdot e^{-(c+i)\ell_{u}n} = n \cdot \frac{1}{n^{c+i}} = \frac{1}{n^{c}}$$
$$\Re(\mathcal{F}_{t}) > 1 - \frac{1}{n^{c}}$$

Remark: $\Theta(n \log n)$ time slots are necessary for all processes to succeed with reasonable probability

Algorithm Theory, WS 2017/18

Claim: In expectation, the time until all processes succeed at least once is $\Theta(n \log n)$.

Proof:

• Random variables T_i : time until exactly $0 \le i \le n$ different processes have succeeded

 $\overline{1}_0 = 0$

• **Goal:** Compute $\mathbb{E}[T_n]$

- Random variable $\Delta_i \coloneqq T_i T_{i-1}$
 - Δ_i measures the number of rounds needed for the i^{th} process to succeed after exactly i 1 processes have succeeded
- We can express T_n as a function of the Δ_i random variables: $T_n = \Delta_1 + \Delta_2 + \dots + \Delta_n$

 $\overline{l}_1 - \overline{l}_0 + \overline{l}_2 - \overline{l}_1 + \overline{l}_3 - \overline{l}_2 + \dots + \overline{l}_n - \overline{l}_{n-1} = \overline{l}_n - \overline{l}_0$

R(Sra)=

Claim: In expectation, the time until all processes succeed at least once is $\Theta(n \log n)$.

Distribution of Δ_i ?

- Recall that $\frac{1}{en} < \mathbb{P}(S_{x,t}) \leq \frac{1}{2n}$
- Event S_t : some new process is successful in round t
- Assume that exactly i 1 processes have been successful so far

<u>i-1</u>

 $\underline{q_i} \coloneqq \mathbb{P}(\underline{S_t} \mid \text{"exactly } i - 1 \text{ succ. proc. before round } t")$

$$\frac{n-i+i}{e_{i}} < q_{i} \leq \frac{n-i+i}{2n}$$

Claim: In expectation, the time until all processes succeed at least once is $\Theta(n \log n)$.

Distribution of Δ_i ?

- $q_i \coloneqq \mathbb{P}(S_t \mid \text{"exactly } i 1 \text{ succ. proc. before round } t")$
- Δ_i is geometrically distributed with parameter q_i

$$\frac{u-i+1}{2n} < q_i \leq \frac{u-i+1}{2n}$$

$$E[(A_i)] = \frac{1}{q_i}$$

$$E[(A_i)] < \frac{e_n}{u-i+1}$$

$$E[(A_i)] \geq \frac{2n}{u-i+1}$$

FREIBURG

Claim: In expectation, the time until all processes succeed at least once is $\Theta(n \log n)$.

• Recall we need $\mathbb{E}[T_n]$, where $T_n = \Delta_1 + \Delta_2 + \cdots + \Delta_n$ $E(T_n] = E[\Delta_1 + \Delta_2 + \dots + \Delta_n] \stackrel{\text{lim. dep.}}{=} \stackrel{\text{lim. dep.}}{=} E[\Delta_i]$ $< \operatorname{en} \cdot \sum_{i=1}^{n} \frac{1}{n-i+1} = \operatorname{en} \cdot \sum_{j=1}^{n} \frac{1}{j} = \operatorname{en} \cdot \operatorname{H}(n) = \operatorname{en} (\operatorname{lnn} + \Theta(1))$ harmonic series Aloha channel E[Tu] < eulun + O(n) $H(u) = lu(u) + \Theta(1)$ E[Ty] 7 2n lun + O(n)

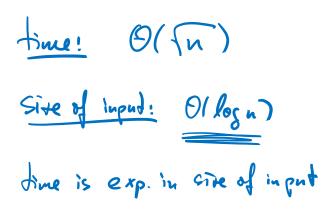
Primality Testing

Problem: Given a natural number $n \ge 2$, is n a prime number?

 $a \cdot b = n$

Simple primality test:

- 1. **if** *n* is even **then**
- 2. return (n = 2)
- 3. for $i \coloneqq 1$ to $\lfloor \sqrt{n}/2 \rfloor$ do
- 4. **if** 2i + 1 divides *n* **then**
- 5. return false
- 6. return true
- Running time: $O(\sqrt{n})$



A Better Algorithm?

- How can we test primality efficiently?
- We need a little bit of basic number theory...

Square Roots of Unity: In \mathbb{Z}_p^* , where p is a prime, the only solutions of the equation $x^2 \equiv 1 \pmod{p}$ are $x \equiv \pm 1 \pmod{p}$ $Z_{p}^{*} = \{1, \dots, p-i\} \qquad \qquad X^{2} \equiv 1 \pmod{p}$ $X^2 - 1 \equiv 0 \pmod{p}$ $(X+1)(X-1) \equiv 0 \pmod{p} \iff (X+1)\cdot(X-1) = C \cdot P$ Phus to be a factor of x+1 or x-1 hold true if p is not prime p=1S x = 4 $x^2 \equiv 1 \pmod{15}$ $X+I \equiv 0 \pmod{g}$ x-1 = 0 (mod p)

• If we find an $x \not\equiv \pm 1 \pmod{n}$ such that $x^2 \equiv 1 \pmod{n}$, we can conclude that n is not a prime.

Algorithm Theory, WS 2017/18

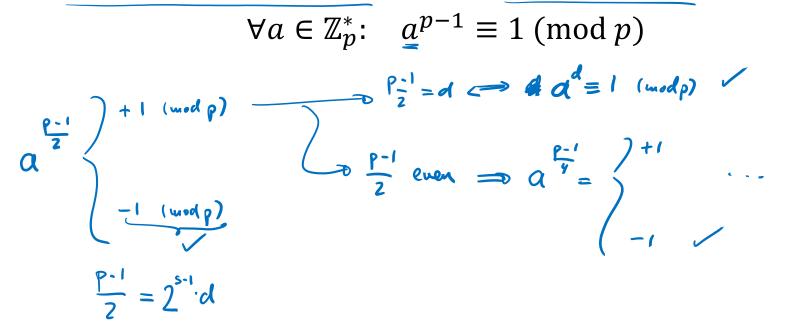
Algorithm Idea

Claim: Let p > 2 be a prime number such that $p - 1 = 2^{s}d$ for an integer $s \ge 1$ and some odd integer $d \ge 3$. Then for all $a \in \mathbb{Z}_{p}^{*}$,

 $a^d \equiv 1 \pmod{p}$ or $a^{2^r d} \equiv -1 \pmod{p}$ for some $0 \leq r < s$.

Proof: $R(all x^2 \equiv 1 \pmod{p} \iff x \equiv \pm 1 \pmod{p}$

• Fermat's Little Theorem: Given a prime number *p*,



Primality Test

We have: If n is an odd prime and $n - 1 = 2^{s}d$ for an integer $s \ge 1$ and an odd integer $d \ge 3$. Then for all $a \in \{1, ..., n - 1\}$,

 $a^d \equiv 1 \pmod{n}$ or $a^{2^r d} \equiv -1 \pmod{n}$ for some $0 \le r < s$.

Idea: If we find an $a \in \{1, ..., n-1\}$ such that $a^{d} \not\equiv 1 \pmod{n}$ and $a^{2^{r}d} \not\equiv -1 \pmod{n}$ for all $0 \leq r < s$, we can conclude that n is not a prime.

- For every odd composite n > 2, at least 3/4 of all possible a satisfy the above condition
- How can we find such a *witness a* efficiently?

Miller-Rabin Primality Test

FREBURG

• Given a natural number $n \ge 2$, is n a prime number?

Miller-Rabin Test:

- 1. **if** *n* is even **then return** (n = 2)
- 2. compute *s*, *d* such that $n 1 = 2^{s}d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x \coloneqq a^d \mod n$;
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for $r \coloneqq 1$ to s 1 do
- 7. $x \coloneqq x^2 \mod n;$
- 8. **if** x = n 1 then return probably prime;

Analysis

UNI

Theorem:

- If *n* is prime, the Miller-Rabin test always returns **true**.
- If *n* is composite, the Miller-Rabin test returns **false** with probability at least $\frac{3}{4}$.

Proof:

- If *n* is prime, the test works for all values of *a*
- If *n* is composite, we need to pick a good witness *a*

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with probability at most 4^{-k} .

Running Time

Cost of Modular Arithmetic:

- Representation of a number $x \in \mathbb{Z}_n$: $O(\log n)$ bits
- Cost of adding two numbers $x + y \mod n$: $O(l_{y})$
- Cost of multiplying two numbers x · y mod n: naindy O'log²n)
 It's like multiplying degree O(log n) polynomials
 → use FFT to compute z = x · y
 S(log n · log log n)

Running Time

Cost of exponentiation $x^d \mod n$:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of d: $d = \sum_{i=0}^{\lfloor \log d \rfloor} d_i 2^i$
- Fast exponentiation:
 - 1. $y \coloneqq 1;$
 - 2. for $i \coloneqq \lfloor \log d \rfloor$ to 0 do
 - 3. $y \coloneqq y^2 \mod n;$

4. **if**
$$d_i = 1$$
 then $y \coloneqq y \cdot x \mod n$;

- 5. **return** *y*;
- Example: $d = 22 = 10110_2$

$$\chi^{22} = (\chi^{"})^{2} = ((\chi^{c})^{2} \cdot \chi)^{2} = (((\chi^{c})^{2} \cdot \chi)^{2} \cdot \chi)^{2} \cdot \chi)^{2}$$

2110

Running Time

HREBURG

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $O(\log^2 n \cdot \log \log n \cdot \log \log \log n)$. \Im

- **1.** if *n* is even then return (n = 2)
- 2. compute *s*, *d* such that $n 1 = 2^{s}d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x \coloneqq a^d \mod n$;
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for $r \coloneqq 1$ to s 1 do
- 7. $x \coloneqq x^2 \mod n;$
- 8. if x = n 1 then return probably prime;
- 9. return composite;

Deterministic Primality Test

 If a conjecture called the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomialtime, deterministic algorithm

→ It is then sufficient to try all $a \in \{1, ..., O(\log^2 n)\}$

- It has long not been proven whether a deterministic, polynomial-time algorithm exists
- In 2002, Agrawal, Kayal, and Saxena gave an $\tilde{\tilde{O}}(\log^{12} n)$ -time deterministic algorithm
 - Has been improved to $\tilde{O}(\log^6 n)$
- In practice, the randomized Miller-Rabin test is still the fastest algorithm